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1. Introduction 
Inflation is defined as the rate of increase in prices and is reflected in a decrease of purchasing power [1]. 

Hence there has been a lot of apprehension and concern by the government, business owners, consumers, and 

financial institutions of the inflation level, due to the large impact it has on these different stakeholders. There 

are many factors known to influence inflation rates, and fuel prices in particular, is considered a significant 

factor; so, having a thorough understanding of how the prices of fuel impact inflation is extremely important, 

to accurately forecast inflation. As a result, it enables various stakeholders to make more informed decisions 

regarding the economy. 

The relationship between fuel prices and inflation have been the subject of several research papers in different 

contexts. According to one study by Daniel F. Meyer [2], the volatility of fuel prices can impact the stability 

of the global economy due to importing and exporting fuel. It also states that an alarming rate of increase in 

fuel prices lead to inflationary pressures within the economy of South Africa. It was discovered in another 

study that ‘the effects of these oil price shocks have been less damaging to economic growth and less 

inflationary’ than it was decades ago [3]; this realisation is backed up by other research as well [4, 5]. These 

findings emphasise the significance of understanding the association between fuel prices and inflation, which 

also varies between countries. Moreover, due to the recent cost of living crisis, there has been increased 

speculation on the how much increased fuel prices affects the inflation rates, along with other inflation indexes 

[6]. Specifically, we look at Consumer Price Index, Food Price Index, Energy Price Index, Headline Consumer 

Price Index and Producer Price Index. 

The objective of this report is to investigate the impact of fuel prices on inflation forecasting. Our focus is 

primarily on the UK as there is an advanced financial sector and the economy is vulnerable to economic 

shocks. Additionally, the ongoing crises has caused the inflation level to rise, reaching 9.2% as of February 

2023 [7] (measured by CPIH). Specifically, we intend to develop a model that can accurately predict future 

fuel prices and use this to gauge the forthcoming inflation level. Throughout our investigation we use statistical 

analysis in addition to machine learning techniques such as time series analysis to create suitable models and 

evaluate these to determine the most appropriate. 

The report is structured as follows: we begin by providing an overview of the relevant studies already 

accomplished about our chosen topic. We then proceed with some exploratory data analysis after sourcing 

and preparing the data to better understand the configuration of our data, this is followed by the rationale 

behind the forecasting models – including hyperparameter tuning and evaluation metrics – created in addition 

to their implementation. Next, we discuss the results of the models, including a model evaluation. Finally, we 

address the implications of our findings as well as limitations, which is followed by potential areas for future 

study. 

1.1 Question development 
 

Any research project requires a question development process which entails identifying a topic of interest and 

ensuring that the chosen question is precise and pertinent to the goals of the project. We commenced this 

process by researching potential topics individually and finding suitable datasets in this area where possible. 

We then gathered and ranked our options in three categories: opportunity to investigate, readily available and 

substantial dataset, and interest in topic. Whichever idea belonged in all three groups were ranked higher, so 

the question could then be refined around the topic. This process was not as linear as described; there were 

multiple revisions and discussions had. We settled on the question, “What is the impact of fuel index on other 

indexes in inflation forecasting in the UK?”, because: 

1. We were positive that the research outcomes would be meaningful and remain relevant. 

2. We had considered existing literature surrounding the topic of fuel prices and inflation and felt we could 

contribute ore knowledge where there were gaps. 

3. We could see that our solution had the potential to influence decision making at government level. 
 

1.2 Related Work 
 

Latest figures from the Office of national statistics demonstrated that gas prices in the UK rose by 129.4% in 

12 months to February 2023 and was one of the main drivers of the increasing inflation rate, contributing to 

the current cost of living crisis [8]. A multitude of papers have previously investigated the ability to forecast 
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inflation and forecast fuel prices using machine learning [9,10]. Thus, there have been multiple studies 

investigating the correlation between rising fuel price and inflation, but no studies have investigated the effect 

of variations in fuel prices affecting the ability to forecast inflation. However, this paper is the first to 

investigate the impact of fuel prices on other inflation indexes during inflation forecasting.  Since the mid-80s 

inflation volatility has decreased, but since, it has been harder to outperform random walk type-forests. For 

instance, it was demonstrated that averaging over the previous 12 months provides a more accurate forecast 

of the inflation for the next 12 months than a Phillips curve that looks backwards [9]. We use LSTMs in our 

research due to the benefits displayed in the literature for exploring inflation data, namely being flexible and 

able to capture the complexities that inflation data carries, namely its non-linear nature. For example, LSTMs 

outperformed autoregressive models (AR), random walk models (RW), Markov switching models and a fully 

connected neural network in forecasting monthly US CPI inflation [10] 
 

2. Data 
 

2.1  Retrieving data 
 

2.1.1 Inflation Dataset 

In this section, we describe the method used to retrieve data from the Global Inflation Database (GID) [11], 

the primary source of inflation data used in the current study. Finding the relevant dataset for the study under 

consideration was the first stage in the data retrieval procedure. The GID was chosen because of its thorough 

coverage of inflation data across nations and historical periods. The database's web interface allowed users to 

access the standardised inflation statistics that had been acquired from several sources such as national 

statistical agencies, central banks, and international organisations. Subsequently, we selected the specific 

variables and time periods of interest within the dataset. In the current research project, monthly inflation rates 

from 2003 to 2022 were retrieved. The variables of concern were the inflation rate as mentioned in [Table 1]. 
Table 1 Inflation index definitions 

Index Definition 

Official Core 

Consumer Price 

Index 

A measure of inflation that excludes the prices of energy and food, which are 

typically more volatile than other consumer goods, from the calculation[12] 

Energy Price Index A measure of inflation that tracks the changes in the prices of energy goods, 

including gasoline, electricity, and natural gas. [13] 

Food Price Index A measure of inflation that tracks the changes in the prices of food items, 

including meat, dairy, and grains. [14] 

Headline Consumer 

Price Index 

A measure of inflation that includes all goods and services purchased by 

consumers, including food and energy. [15] 

Producer Price Index A measure of inflation that tracks the changes in the prices of goods and services 

at the producer level before they reach the consumer market. [16] 

2.1.2 Fuel Dataset 

In our study, we used the Weekly Road Fuel Prices dataset [17] as supplementary information to our primary 

dataset to examine the influence of energy prices on the UK economy. The inclusion of this dataset was 

deemed essential as it provides average retail prices of road fuels on a weekly basis, which is critical for 

monitoring variations in UK road fuel prices over time. The Energy Prices Statistics Team is responsible for 

maintaining and publishing this dataset. To obtain this dataset, we accessed the gov.uk website, which is the 

primary source of the Weekly Road Fuel Prices dataset. The data was updated regularly, with the most recent 

update occurring for the week starting 13 February 2023. The data was downloaded in CSV format and 

subsequently imported into our software for further analysis. 

2.2 Data Pre-Processing 
 

Inflation data pre-processing 

The inflation data is structured in the form of an Excel workbook containing multiple worksheets, each 

corresponding to a distinct inflation index. To facilitate ease of data retrieval, each worksheet is saved as a 

separate CSV file (Appendix 1.1) containing economic data, specifically Consumer Price Index (CPI), 
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Producer Price Index (PPI), Household Consumption Price Index (HCPI), Fuel Price Index (FCPI), and 

Electricity Price Index (ECPI) for various countries and filter the data to only include information for Great 

Britain (GBR) and are concatenated. The first four columns of the data containing metadata are then removed, 

and only the data starting from the fifth column is kept. The data frames are then concatenated into one, 

transposed, and the column names are updated to the first row of the data frame that reflects the month. The 

first row is then removed, and a new datetime index is created by converting the existing monthly index values. 

This new datetime index is set as the index for the data frame. The 'Energy Price Index' column is converted 

to a numeric format, and any missing values in the data frame are filled in using forward fill and backward fill 

methods (Appendix 1.2). 

 

Data Normalisation 

We employ various normalization methods to rescale and standardize data to enable comparison and 

interpretation. The four methods discussed are the Min-Max Approach, z-score method, Maximum Absolute 

Scaling, and Robust Scaling. The Min-Max Approach adjusts the range of the feature to [0,1] by subtracting 

the minimum value of the feature and dividing by the range. The z-score method standardizes the data to have 

a mean of 0 and a standard deviation of 1 by calculating the difference between each value and the mean and 

then dividing it by the standard deviation. In contrast, the Maximum Absolute Scaling method scales each 

observation by dividing it by the absolute maximum value of the feature. The Robust Scaling method is 

particularly useful when dealing with data containing outliers, as it scales each feature by subtracting the 

median and dividing by the interquartile range, which is a robust measure of dispersion. 

To compare the effectiveness of each method, line plots [Figure 1] of the normalized data frames are generated 

(Appendix 1.3) using the Seaborn library, and they are plotted on four subplots in one figure. After inspecting 

the plots, the Robust Scaling method is selected since it provides the most consistent and stable results 

regardless of the data distribution. 

 

 
Figure 1 Scaling mechanisms applied to raw data: Min Max (top-left), z-score (top-right), Maximum Absolute (bottom-left) and Robust (bottom-

right) 

Auxiliary data pre-processing 

To make fuel data suitable for analysis, it undergoes pre-processing steps such as cleaning, normalization, and 

transformation similar to inflation data (Appendix 1.4). Additionally, the fuel data is resampled from a weekly 

to a monthly coarse level, the original weekly data is resampled to a monthly level using the "month start" 

frequency ('MS') and then averaged within each monthly period. This is a common technique used to reduce 

the temporal resolution of the data and facilitate trend analysis over longer time periods. 

 

3 Exploratory Data Analysis 
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The following section will briefly talk about the Exploratory data analysis (EDA), which is used to analyse 

and investigate data sets and summarize their main characteristics, often employing data visualization 

methods. It helps determine how best to manipulate data sources to get the answers, making it easier to 

discover patterns, spot anomalies, test a hypothesis, or check assumptions. 
 

3.1 General EDA 
Histograms - A useful visualisation technique for examining the distribution of data in a dataset is the 

histogram plot. When examining the distribution of continuous data like inflation indices, they are very 

helpful. A histogram graphic can show the frequency and distribution of inflation rates over time in the context 

of inflation indices. 

Box Plots - Box plots are a useful tool for representing and contrasting data distributions visually. It helps in 

understanding the central tendency and variability of each inflation index as well as spotting outliers or 

extreme values in the case of inflation indices.  

Pair Plot - Pair plots are used to determine the most distinct clusters or the best combination of features to 

describe a connection between two variables. It is essential when forecasting inflation because it provides a 

broad understanding of how indices are related to one another. 

 

3.2 Timeseries Data Visualisations 
Autocorrelation analysis 

It is a crucial component of time series forecasting's exploratory data analysis. The process is used to find 

hidden patterns and prove that the data are random. When using autoregressive-moving-average (ARMA) 

models for forecasting, the importance of autocorrelation analysis is particularly notable since it enables the 

selection of the best model parameters. Plots for the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) are examined as part of the investigation. 

Autocorrelation Plot - A graphical tool called an autocorrelation plot is used to investigate the relationship 

between a time series and its prior values at various time delays. An autocorrelation graphic illustrates the 

degree of connection between the current month's inflation rate and the inflation rates in preceding months 

up to a given number of lags in the context of inflation indices for monthly time series data. 

The correlation between two variables y1, y2 is defined as:  

 

 

𝜌 =

1
𝑛 {∑ [(𝑦1 −  𝜇1)(𝑦2 −  𝜇2)]𝑛

{𝑖=1} }

𝜎1𝜎2
 

 

(1) 

Partial Autocorrelation Plot - It is a statistical method used to examine how present and historical values of 

a variable are related while accounting for other factors that could be correlated. It involves calculating the 

partial correlation coefficients, corrected for various lags in between, between the inflation index's present 

value and its prior lags. The graphic illustrates the degree of correlation between the current inflation index 

and historical lags while taking other intervening factors into account. 

The formula for the Partial Autocorrelation Function (PACF) for k lags can be defined as: 

  

ρ(𝑦𝑖,𝑘) =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒([𝑦𝑖|𝑦(𝑖−1), 𝑦(𝑖−2), … . , 𝑦(𝑖−𝑥+1)], [𝑦(𝑖−𝑘)|𝑦(𝑖−1), 𝑦(𝑖−2), … , 𝑦(𝑖−𝑘+1)])

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒([𝑦𝑖|𝑦(𝑖−1), 𝑦(𝑖−2), … . , 𝑦(𝑖−𝑥+1)]) ∗ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒([𝑦(𝑖−𝑘)|𝑦(𝑖−1), 𝑦(𝑖−2), … , 𝑦(𝑖−𝑘+1)])
 

(2) 

 

4 Stationarity 
 

Stationarity tests 

When analysing time series data, it is crucial to evaluate whether the data exhibits stationarity. Stationarity 

refers to the constancy of the statistical properties over time including the mean, variance, and covariance 

[18]. In contrast, non-stationary time series demonstrate trends or seasonality, making it challenging to apply 

models that require stationarity such as autoregressive (AR) and moving average (MA) models. 
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Therefore, prior to utilizing AR or MA models for forecasting, it is essential to conduct stationary tests on the 

time series data. The commonly used test for stationarity is the Augmented Dickey-Fuller (ADF) test [19], 

which evaluates the null hypothesis that the time series includes a unit root signifying non-stationarity 

compared to the alternative hypothesis that the time series is stationary. This is crucial to ensure accurate 

forecasting, as non-stationarity can lead to erroneous predictions when using models that require stationarity. 

Before conducting a parametric Augmented Dickey-Fuller (ADF) test on a time series dataset, we conduct 

preliminary checks for stationarity using non-parametric tests, such as the Hodrick-Prescott filter (Appendix 

2.1). This particular test is designed to separate a time series into two distinct components: a trend component 

and a cyclical component. If the trend component is found to be non-zero, then it indicates that the time series 

is non-stationary. The Hodrick-Prescott filter is widely used in the fields of economics and finance to 

decompose time series data into its underlying trend and cyclical components. This is useful for understanding 

the patterns and dynamics present in the data, as well as for identifying trends and anomalies that may have 

important implications for forecasting and decision-making. The [Figure 2] below depicts the application of a 

filter to the Diesel price. 
 

 
Figure 2  Hodrick-Prescott applied to timeseries data, trend component (left) and cyclical component (right) 

After conducting a non-parametric test, it was determined that the data was non-stationary. To further test for 

stationarity, an Augmented Dickey-Fuller (ADF) test was conducted. If the p-value from the ADF test is less 

than the chosen significance level, typically 0.05, the null hypothesis is rejected, and the time series is 

considered stationary. Conversely, if the p-value is greater than the significance level, the null hypothesis 

cannot be rejected, and the time series is considered non-stationary. 

Apart from the p-value, the ADF test also produces a test statistic (ADF Stat) which can be compared to the 

critical value at the selected significance level. If the ADF Stat is less than the critical value, the null hypothesis 

is rejected, indicating that the time series is stationary. However, if the ADF Stat is greater than the critical 

value, the null hypothesis cannot be rejected, and the time series is considered non-stationary (Appendix 2.2). 

Applying ADF test confirmed the data to be non-stationary and validated the preliminary findings done on 

non-parametric test. 

 

Converting Non-Stationary data to Stationary 

 

 

Figure 3 Comparison plot of non-stationary (left) and stationary data (right) 

This is achieved by applying several transformations successively. First, a rolling mean with a window size 

of 12 is computed and then subtracted from the original data to eliminate any underlying trend. Next, 

seasonality is removed by taking the difference between the data at the same time point in the previous season, 

using the diff () function with a period of 12. Then, the code examines autocorrelation by computing the 
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difference between the data and its lagged value and removes it using the diff () function (Appendix 2.3). The 

resulting data is considered stationary that can be used for further analysis and modelling that requires 

stationary data. To validate stationarity, Augmented Dickey-Fuller is re-run and we see that the null hypothesis 

is rejected, concluding the data has indeed been converted to stationary (Appendix 2.4). The [Figure 3]  

illustrates a comparison between the raw data and the converted stationary data for Petrol price index. 

 

5 Modelling theory and implementation 
 
 

5.1  Linear models 
 

 

5.1.1 Principal Component Analysis 

Principal component analysis, or PCA, is a technique for reducing the number of dimensions in large data sets 

by condensing a large collection of variables into a smaller set that retains most of the large set's information. 

Because PCA is an easy, non-parametric way of removing pertinent information from complex data sets, it is 

widely utilized in various types of study, from neuroscience to computer graphics. A simple roadmap is 

provided by PCA for how to simplify a complex data set to a lower dimension to show the sometimes 

concealed, underlying structure [20]. 

Theory 

PCA involves transforming interdependent variables (called “correlated” in statistics) into new variables that 

are uncorrelated with each other. The information provided by the data will be described by these variables, 

which are referred to as the principal components. We need to look at the covariance matrix because 

covariance is a measure of the joint variability of two random variables, to maintain the PI and discard the rest 

in the PCA, we must compute the covariance of our data matrix and search for the directions or vectors that 

gather the most information [21]. 

 

1. Standardization of the data 

For each continuous initial variable to contribute equally to the analysis, this phase standardizes the range of 

the variables. Standardization must be done before PCA because the latter is very sensitive to the variances of 

the starting variables. That is, if there are significant disparities in the initial variable ranges, the bigger range 

variables will predominate over the smaller range variables, resulting in biased findings. If “A” is the matrix 

which describes the data, thus each row is an example, and each column is a feature. Let’s set n equal to the 

number of features et m the number of examples. Thus, the matrix A is a matrix mxn. 

 
𝐴𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑖 =
𝐴 − 𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
  (3) 

 

𝑤ℎ𝑒𝑟𝑒 𝐴𝑖  𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐴𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 

2. Covariance matrix and diagonalization 

The purpose of this stage is to determine the relationship, if any between the variables in the input data set 

and how they differ from the mean in relation to one another. Because variables can occasionally be highly 

connected to the point where they include redundant data. We compute the covariance matrix to find these 

associations [22].The covariance of a matrix is given by following formula: 

 
𝑐𝑜𝑣(𝐴𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) =  ∑ = 

1

𝑚
∑(𝐴𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑖 )(𝐴𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑖 )

𝑇
𝑛

𝑖=1

= 𝐴𝑇𝐴 (4) 

3. Dimensionality reduction 

In this part, we want to determine how many eigen vectors are required to adequately describe our data. 

Therefore, we must first determine the importance of each eigenvalue before calculating the cumulative 

variance. The significance of an eigen value is represented as: 

 
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝜎𝑖 =

𝑎𝑏𝑠(𝜎𝑖)

∑ 𝑎𝑏𝑠(𝜎𝑖)
𝑛
𝑖=1

 (5) 
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4. Choose the k eigen vectors 

In this part we choose k eigen vectors based on the threshold we defined. 

 
𝑐𝑢𝑚𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =  

∑ 𝜎𝑖
𝑘
𝑖=1

∑ 𝜎𝑖
𝑛
𝑖=1

≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (6) 

Implementation 

We first generated the covariance matrix, and then we retrieved the eigen values and eigen vector from that 

covariance matrix. We have set the threshold value for dimensionality reduction to 99.5%, which will 

essentially encompass all the significant characteristics. Eigen values of characteristics that fall below the 

threshold are not taken into consideration. 
 

5.2 Statistical Models 
 

5.2.1 Exponential Smoothing 
 

Theory 

We use Exponential Smoothing as a base model to understand how the changes in inflation fluctuations from 

past affect the future predictions. The Exponential Smoothing Model [23] functions by computing a weighted 

average of past observations, where recent observations are given more weight than older ones. The weight 

given to past observations gradually decreases over time based on a smoothing parameter that can be adjusted 

to suit the time series under analysis. This Model is advantageous due to its ability to capture trends and 

seasonality present in the data, resulting in more precise forecasts of future inflation rates. The model can be 

customized to accommodate numerous seasonal patterns including weekly and monthly fluctuations. 

Alpha is the smoothing factor for the level of the time series, which controls the weight given to past 

observations. A higher alpha value places greater emphasis on recent observations, while a lower alpha value 

places more weight on older observations. 

Beta is the smoothing factor for the trend of the time series, which controls the rate of change over time. A 

higher beta value results in a more responsive trend to recent changes, while a lower beta value results in a 

more stable trend that changes more slowly. 

Seasonal periods are the number of time steps in a seasonal cycle, such as the number of months in a year for 

monthly data or the number of quarters in a year for quarterly data. This parameter is used to capture seasonal 

patterns in the data and adjust for them in the forecast. 

 
𝑦𝑡 =  𝑙𝑡−1 +  𝑏𝑡−1 +  𝑠𝑡−𝑚 +  𝜖𝑡 (7.1) 

 ℓ𝑡 =  ℓ𝑡−1 +  𝑏𝑡−1 +  𝛼𝜀𝑡 (7.2) 

 𝑏𝑡 =  𝑏𝑡−1 +  𝛽𝜀𝑡 (7.3) 

 𝑠𝑡 =  𝑠(𝑡− 𝑚) +  𝛾𝜀𝑡 (7.4) 

Where m 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑎𝑠𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟, 0 ≤  α ≤  1, 0 ≤  β ≤  α, and 0 ≤  γ ≤  1 –  α 

𝑦𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑐 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑎𝑛𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑒𝑣𝑒𝑙 𝑙−1,
𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑟𝑒𝑛𝑑 𝑏𝑡−1, 𝑡ℎ𝑒 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑠𝑡−𝑚 

𝑙𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑣𝑒𝑙 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑙𝑒𝑣𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑙𝑡,

𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑒𝑣𝑒𝑙 𝑙𝑡−1, 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑟𝑒𝑛𝑑 𝑏𝑡−1, 𝑎𝑛𝑑 𝑎 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 𝛼𝜀𝑡 

Implementation 

We choose the parameter values of alpha and beta to be 0.7 to place greater emphasis on the more recent 

trends in the time series data. This is because the inflation rates have been highly variable in recent years, and 

it is important to capture these fluctuations in the forecasting model. The seasonal periods parameter was set 

to 12 to correspond with the monthly frequency of the time series data being analysed [24]. The testing dataset 

is selected from the most recent twelve months, while the remaining data is employed as the training dataset 

(Appendix 3.1). For each index, the model is executed and assessed based on metrics such as mean square 

error, mean absolute error, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

(Appendix 3.2). 
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5.2.2 Auto-Regressive Model 
 

Theory 

While Exponential Smoothing models are particularly well-suited for data exhibiting seasonal or cyclical 

patterns. On the other hand, AR models are more appropriate for data that exhibit strong autocorrelation and 

trends. The Autocorrelation Function (ACF) plot reveals that the inflation index data displays a high degree 

of correlation and presents additive trends (Appendix 4.1). Additionally, AR models have the ability to 

integrate numerous lagged values of the time series variable, thus enabling them to capture more intricate 

associations between past and future values. 

The Auto-Regressive model assumes that the current value 𝑦𝑡 is dependent on previous values 

𝑦{(𝑡−1)}, 𝑦{(𝑡−2)}, …. Because of this assumption, we can build a linear regression model. AR(p) model: 

 𝑌𝑡 =  𝑐 +  𝜙1𝑌{𝑡−1} +  𝜙2𝑌{𝑡−2} +  … +  𝜙𝑝𝑌{𝑡−𝑝} +  𝜀𝑡 (8) 

where: 

𝑌𝑡 is the value of the time series at time t. 

c is a constant (also known as the intercept). 

𝜙1, 𝜙2, … , 𝜙𝑝 are the parameters of the model that represent the coefficients on the past values of the time 

series. 

𝑌{𝑡−1}, 𝑌{𝑡−2}, … , 𝑌{𝑡−𝑝} are the past values of the time series. 

𝜀𝑡 is the error term (also known as the residual) at time t, which represents the part of the time series that is n

ot explained by the past values. 

The parameter p is the order of the AR model, which specifies how many past values of the time series are 

included in the model. 

Implementation 

AR models assume that the underlying process generating the time series data is stationary [25], which means 

that the statistical characteristics of the process do not alter over time. The next step in the AR modelling 

process is to specify the model order denoted by the value "p," which indicates the number of prior values of 

the time series variable used to forecast its value at time "t". For example, an AR (1) model only considers the 

preceding observation to estimate the current value, while an AR (2) model uses the two previous observations. 

We take the data converted to stationarity as input for AR Model. We can then establish the parameter value 

of "p" by analysing the autocorrelation function (ACF) plot, which indicate a strong correlation to the 

preceding year's data and as a result a value of 15 is assigned (Appendix 4.2). The accuracy of the AR model's 

predictions is evaluated using statistical measures such as mean absolute error, mean squared error, Akaike 

Information Criterion (AIC) [26] and Bayesian Information Criterion (BIC) (Appendix 4.3). 

 

5.2.3 Moving Average Model 

 

The moving average (MA) model is a mathematical framework used to analyse and forecast time series data, 

such as inflation, by using past error terms to predict future values. We decided to choose a moving average 

model because it is able to help smooth the data and provide a clear visualisation of the trend of the data, 

Theory 

The MA model assumes that the current value of a time series variable can be predicted by a linear combination 

of the past error terms, where the order of the model (represented by "q") determines the number of lagged 

error terms used in the prediction. For instance, a MA (1) model would utilize the previous error term and a 

coefficient to forecast the current value of the time series variable. The formula for a MA (1) model includes 

a constant term, the current error term, and the product of the coefficient and the lagged error term. By 

analysing the coefficients and residual errors in the MA model, we can gain insights into the dynamics of the 

time series data and make forecasts for future values. It is important to note that the effectiveness of the MA 

model relies on the specific characteristics of the data being analysed and that it is one of several time series 

models used to analyse and forecast inflation data. 

The first-order moving average model, which is represented by MA (1), is expressed as: 
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𝑥𝑡 = 𝜇  +  𝜔𝑡  +  𝜃1𝜔𝑡−1 

 
(9.1) 

The second-order moving average model, which is represented by MA (2), is expressed as: 

 
𝑥𝑡 = 𝜇  +  𝜔𝑡  +  𝜃1𝜔𝑡−1 + 𝜃2𝜔𝑡−2 

 
(9.2) 

The qth order moving average model, which is represented by MA(q), is expressed as: 

 
𝑥𝑡 = 𝜇  +  𝜔𝑡  +  𝜃1𝜔𝑡−1 + 𝜃2𝜔𝑡−2  + ⋯ + 𝜃𝑞𝜔𝑡−𝑞 

 
(9.3) 

To figure the order of an MA model, you need to look at the ACF. The order of the ACF plot allows an 

estimation of the order q.  

Implementation  

The moving average model has a precondition of only using stationary data. After completing our stationary 

tests, and finding the data was in fact non-stationary, we converted the data to stationary. 

The testing data that we used for the MA model was the last 15 data point of stationary data, and our training 

dataset was all the rows, excluding the last 12. 

 

5.2.4 ARIMA Model 
 

Theory 

The AR in ARIMA stands for Auto Regressive and it models the relationship between an observation and a 

lagged version of itself. The AR component captures the trend in the data. The MA in ARIMA represents the 

Moving Average and models the relationship between an observation and a lagged error term. It captures the 

noise of the data [27]. 

The second component of the ARIMA model is Integration, also known as Differencing. This element models 

the degree of differencing needed to make the time series stationary, i.e., to remove any trend or seasonality 

present in the data [28] to obtain meaningful results. It can be expressed as: 

 
𝑌𝑡

′ = (1 − 𝐿)𝑑 ⋅ 𝑌𝑡 

 
(10) 

Where 𝑌𝑡
′ is the differenced series, L is the Lag operator and d is the order of differencing. 

The equation for the ARIMA model, with notation p (AR order), d (degree of differencing, q (MA order), 

applied to inflation data looks like: 

 
𝑌𝑡 =  𝑐  +  𝜙1𝑌𝑡−1 +  𝜙2𝑌𝑡−2 +   …   +  𝜙𝑝𝑌{𝑡−𝑝} +  𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 

 
(11) 

Implementation 

The ARIMA model is best implemented with a stable time series data set. So, it is important to check if the 

data has a constant variance and mean over time [27]. Using multiple tests, we found our time-series data to 

be non-stationary, so it was converted to stationary by applying some transformations, allowing us to execute 

the ARIMA model. 

On the data is stationary, the values of p and q can be determined using the autocorrelation function (ACF) 

and partial autocorrelation function (PACF) plots. The ACF plot shows the correlation between each 

observation and its lagged values, while the PACF plot shows the correlation between an observation and its 

lagged values after removing the effect of correlations due to intermediate lags. 

The number of AR terms (p) can be determined by looking at the significant lags in the PACF plot, while the 

number of MA terms (q) can be determined by looking at the significant lags in the ACF plot. A lag is 

considered significant if its corresponding correlation coefficient is outside the bounds of the confidence 

interval. 

Using a test size of 12 (the last 12 points of our data), we define a model that loops through the data frame of 

the train set, highlighting the differentiating aspect of the ARIMA model. We then fit a model that calculates 

AIC, BIC, MSE and MAE, all of which will assist in accurately assessing the results of the model prediction. 

The 'order' parameter is a tuple that specifies the model order as (1, 0, 15) meaning the model has a single 

autoregressive term (p=1), no differencing (d=0), and 15 moving average terms (q=15). 
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5.2.5 SARIMA Model 
 

SARIMA (Seasonal Autoregressive Integrated Moving Average) is a statistical model used for time series 

forecasting. It is an extension of the popular ARIMA (Autoregressive Integrated Moving Average) model, 

which is used for non-seasonal time series data. Seasonal impacts are frequently seen in many time series data. 

the typical temperature recorded in a place with four seasons, for instance, every year there will be a seasonal 

effect, and this season's temperature will unquestionably be strongly correlated with the temperature recorded 

last year at the same season [29]. 

Methodology 

The SARIMA (Seasonal Autoregressive Integrated Moving Average) methodology is a time series 

forecasting technique that extends the ARIMA model to incorporate seasonality. The general form of a 

SARIMA model is denoted as SARIMA (p, d, q)(P, D, Q, s), where: 

• p: the number of autoregressive terms 

• d: the number of differences needed to make the time series stationary 

• q: the number of moving average terms 

• P: the number of seasonal autoregressive terms 

• D: the number of seasonal differences needed to make the time series stationary 

• Q: the number of seasonal moving average terms 

• s: the period of the seasonality (e.g., 12 for monthly data with annual seasonality) 

The formula for a SARIMA model can be expressed as: 

 
(1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋯ − 𝜑ₚ𝐵ᵖ)(1 − 𝛷1𝐵ˢ − 𝛷2𝐵2ˢ − ⋯ − 𝛷ₚ𝐵ᴾˢ)(1 − 𝐵)ᵈ(1 − 𝐵ˢ)ᴰ𝑦ₜ 

=  (1 + 𝜃1𝐵 + 𝜃2𝐵2 + ⋯ + 𝜃ₚ𝐵ᵠ)(1 + 𝛩1𝐵ˢ + 𝛩2𝐵2ˢ + ⋯ + 𝛩ₚ𝐵ᴾˢ)𝜀ₜ 
(12) 

𝑤ℎ𝑒𝑟𝑒: 
𝑦ₜ 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 
𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑠ℎ𝑖𝑓𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐵𝑦ₜ = 𝑦ₜ − 1 
𝜀ₜ 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 
𝜑1, … , 𝜑ₚ 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑎𝑢𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
𝛷1, … , 𝛷ₚ 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑎𝑢𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
𝜃1, … , 𝜃ₚ 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
𝛩1, … , 𝛩ₚ 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
𝑑 𝑎𝑛𝑑 𝐷 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑛𝑜𝑛 − 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 
 

This formula represents a linear equation that models the relationship between the time series at time t and its 

lagged values, as well as the errors in the model. The coefficients in the model can be estimated using statistical 

methods such as maximum likelihood estimation. Once the model is fitted to the data, it can be used to forecast 

future values of the time series. 

Implementation 

We have used the function “tsa.SARIMAX(sarimaTrainDF[col], order= (0, 1, 1), seasonal_order=(0, 1, 1, 

12)” of the “statsmodels.tsa” module. This function is used to fit a seasonal ARIMA (SARIMA) model to a 

time series. The sarimaTrainDF[col] argument specifies the column of the sarimaTrainDF Data Frame that 

contains the time series data. The order argument specifies the order of the SARIMA model, which is a tuple 

of three integers. The first integer specifies the number of autoregressive (AR) terms, the second integer 

specifies the number of moving average (MA) terms, and the third integer specifies the number of seasonal 

autoregressive (SAR) terms. In this case, the order is (0, 1, 1) with seasonal order of 12, which means that the 

model has two AR terms, two MA terms, and no SAR term, the SAR term is 0 because we found that there 

was minimal seasonality during time series decomposition. The SARIMAX () function returns a 

statsmodels.tsa.statespace.SARIMAXResults object. This object contains information about the fitted model, 

such as the estimated parameters, the AIC and BIC scores, and the forecast errors. 

5.3 Deep-learning models 
 

5.3.1 Recurrent Neural Network Model 
 



  

  

 

- 11 - 

Theory 

Recurrent neural network (RNN) modelling is a machine learning algorithm used for sequential datasets. Thus, 

it is applied to timeseries which is the exact structure of our fuel data rendering this model suitable to use. The 

main idea behind RNNs is that it considers the current input, as well as previous inputs [30]. RNNs use an 

internal memory which assists in the preservation of information retrieved from previous data points. They 

utilise a feedback loop that helps to determine the order in which the data values were input into the recurrent 

neural network – this distinguishes RNNs from traditional neural networks [31]. Consequently, previous 

values are considered in the recurrent model. 

 
Figure 4 Recurrent neural network with the shared weights of U, V, and W [31] 

[Figure 4] demonstrates the notation of the RNN and shows its transformation into the full network. The 

process of carrying the memory forward is expressed as: 

 𝑎𝑡 = b + 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 (13.1) 

 ℎ𝑡 = tanh(𝑎𝑡) (13.2) 

 𝑜𝑡 = c + 𝑉ℎ𝑡 (13.3) 

 �̂�𝑡 = softmax(𝑜𝑡) (13.4) 

Where ℎ𝑡 is the current hidden state (‘memory’) at time t, 𝑥𝑡  represents the input at time t, 𝑜𝑡  represents the 

output at time t, and U, V and W are variables that represents the weight matrices. 
 

Implementation 

Univariate Forecasting: We implement the RNN model for both univariate and multivariate forecasting. 

Firstly, the dataset is split into training and testing using a test size of 12. We then define a model function 

using TensorFlow module containing the RNN initialiser, output, model, and loss function. We use a batch 

size of 64, our epoch is defined as [50, 100, 150] and we have a learning rate of [0.001, 0.01, 0.1]. There are 

multiple values for each because a learning rate close to 1 can increase the pace of the training process of the 

RNN model however this may cause overshooting which increases the margin of error. Additionally, the 

number of epochs governs a trade-off between the length of time it takes to train the RNN and its accuracy. 

Having a range of values allows us to decide which is optimal for our results. Next, we compile the model 

using the Adam optimiser algorithm as it is well-suited for large datasets and MSE as our loss. 

We then implement the model, calculating the AIC, BIC MSE and MAE metrics as well. On giving our results 

we merge the train, test, and prediction values into one data frame and produce a plot for each index. 

To obtain prediction values for the future, we begin by collecting the last three columns of our original data, 

‘datagreaterthan2003’, and operate the model defined to generate predicted values for a given future date 

range, with a line plot of the results. 

Multivariate forecasting: To proceed with multivariate forecasting, we begin by filtering the principal 

components of our data set for each index: Producer Price Index, Energy Price Index, Official Core Consumer 

Price Index, Food Price Index, Petrol and Diesel. Then we split the data as before, reshape and follow the 

same process as for the univariate set.  

In this instance, we also produce a heat map displaying the correlation between each of the variables. 
 

5.3.2 Long Short-Term Memory networks  
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Long Short-Term Memory (LSTM) models are frequently used as forecasting models within a business 

application, such as predicting inflation. As a result, we decided that a LSTM neural network would be an 

excellent tool to allow for forecasting future consumer, energy, food, headline, and producer price index, as 

well as petrol and diesel prices. We decided to use LSTMs due to their superiority in handling long-term 

dependencies, which was important due dealing with time-series data [32]. RNNs suffer an issue known as 

the vanishing gradient problem. The vanishing gradient problem relates to deep learning gradient descent 

algorithms of the RNN [33]. During the time series of the network, gradient descent is combined with a 

backpropagation algorithm to update synapse weights of the neural network and calculate cost function at 

each point. Each calculation of cost function at deeper neurons of the layer is used to change weights of 

neurons in shallower layers, this process is multiplicative, meaning the gradients will be decreasing as the 

gradient calculation moves throughout the network-leading to the vanishing gradient problem. Conversely, 

LSTMs can fix this issue since the architecture of an LSTM is able to leave more dimensions untouched. Thus, 

since our dataset is multivariate, the LSTM would be able to portray the more complex relationships which a 

multivariate dataset would display as opposed to a univariate dataset. 

Theory 

LSTMs contain four interacting layers within a single repeating module. In an LSTM, the “cell state” acts as 

system to allow information through, with some minor interactions occurring [34]. The cell state may gain 

information or lose information, which is regulated by gates, aiding the transmission or stoppage of 

information. Gates are a sigmoid neural network layer, either outputting 0 - no transmission or 1 for allow 

transmission.  

The input stage: First step of the LSTM, is to decide what information is disregarded from the cell state. 

The sigmoid layer inspects ℎ𝑡−1 and 𝑥𝑡 then outputs zero or one for each number 𝑐𝑡−1 [35]. 

 𝑓𝑡 = 𝜎(𝑊𝑓   ∙  [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑓) (14.1) 

 
𝑖𝑡 = 𝜎(𝑊𝑖  ∙  [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑖) (14.2) 

 
𝐶𝑡 = tanh(𝑊𝑐  ∙  [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝐶) (14.3) 

The forget stage: In the second step of the LSTM, the now outdated 𝑐𝑡−1 is updated to 𝑐𝑡 as the new cell 

state. Consequently 𝑓𝑡 is multiplied by the previous 𝑐𝑡−1, and then 𝑖𝑡. 𝐶𝑡 is added, this is essentially the new 

values of state scaled by the update parameter. 

 𝐶𝑡1 = 𝑓𝑡  ∙  𝐶𝑡−1 + 𝑖𝑡  ∙  𝐶𝑡 (15) 

The output stage: In the last stage of the LSTM, is the output, which will be based on a filter version of the 

cell state. It includes two sub-steps; running a sigmoid layer to decide output and putting the cell state through 

tanh to push the values between –1 and 1 and multiplying by output of the sigmoid gate. Demonstrated by the 

following two equations: 

 𝜎𝑡 = 𝜎(𝑊𝑜[ ℎ𝑡−1,  𝑥𝑡 ]  +  𝑏𝑜) (26.1) 

 ℎ𝑡 = 𝑜𝑡  ∙   tanh(𝐶𝑡) (16.2) 

 
Figure 5 Basic architecture of an LSTM memory block [31] 
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Implementation and reasonings for parameters  

The dataset ‘dataGreaterthan2003’ was first split into training and testing data sets using a test size of 12. The 

batch size is utilised for training of the LSTM, essentially the training samples are provided as batches, hence 

the batch size can affect performance accuracy. We chose a batch size of 64, as we believed this could present 

the most optimal results for prediction.  

The optimisation algorithm that we chose was the Adam optimiser, the Adam optimiser can update the 

learning rate for each network weight during training- unlike a single learning rate. We decided to choose the 

Adam optimiser because it was straightforward and easy to implement, thus, it is also computationally efficient 

and suited for large multivariate datasets such as ours.  

An epoch refers to the single time an entire training dataset is passed through the LSTM. Generally, the greater 

the number of epochs, the more the LSTM network can learn from the data, leading to increased accuracy on 

testing data. However, overtime, increasing the number of epochs can lead to overfitting. For this reason, we 

started with 50 epochs, and increased in multiples of 50 until 150. By doing this, we continued to train, until 

the performance stopped improving. 

The learning rate hyperparameter dictates the step size for updating weights of the network during the training 

stage. The learning rate is a critical component of the LSTM because it determines the convergence rate to the 

optimal weights which can minimise the loss function. For example, if the learning rate is too large, sub-

optimal range of weights may be learned too fast, or if the learning rate is too small, the training process would 

take a considerable amount of time. For this reason, we chose learning rates 0.001.0.01 and 0.1. We started 

with a small learning rare and increased the value to find the optimal learning rate. 
 

Table 2 Parameters used for LSTM model. 

Batch size 64 

Test size 12 

Optimiser Adam 

Loss Mean squared Error 

Window 3 

Epochs 50,100,150 

Learning rate 0.001,0.01,0.1 
 

5.3.3 Transformer Model 
 

Introduction 

Transformers and a system known as a sequence-to-sequence architecture are both discussed in the paper [36]. 

A neural network called series-to-Sequence (also known as Seq2Seq) translates one series of elements, such 

as the words in a phrase, into another sequence. Transformer is an architecture that uses two components 

(Encoder and Decoder) to transform one sequence into another, however it varies from previous sequence-to-

sequence models in that it does not imply any recurrent networks. 
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Figure 6 The Transformer-model architecture [36]. 

Methodology 

The basic idea behind transformers is to use self-attention to learn long-range dependencies between different 

parts of a sequence. Self-attention is a mechanism that allows a neural network to attend to different parts of 

an input sequence, and to learn how these parts are related to each other. The encoder maps an input sequence 

of symbol representations (𝑥1, … , 𝑥𝑛)to a sequence of continuous representations 𝑧 =  (𝑧1, … , 𝑧𝑛). Given z, 

the decoder then generates an output sequence (𝑦1, … , 𝑦𝑚)of symbols one element at a time. At each step the 

model is auto regressive, consuming the previously generated symbols as additional input when generating 

the next [36]. 

• Input Embedding 

The input text must first be transformed into a numerical format that the neural network can use. This is 

typically done using word embeddings, which map each word to a high-dimensional vector. A matrix is 

created by concatenating the input embeddings together. 

• Positional Encoding 

Since the Transformer model does not use recurrent layers to process the input, it needs a way to capture 

the position of each word in the sequence. This is achieved using positional encoding, which adds a 

fixed vector to each input embedding based on its position in the sequence. The positional encoding 

vectors are defined [36]: 

 𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
pos

10000 
2i

dmodel

) (17.1) 

 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
pos

10000 
2i

dmodel

) (17.2) 

𝑤ℎ𝑒𝑟𝑒 𝑝𝑜𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑎𝑛𝑑 𝑑𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒  
𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟. 
𝑇ℎ𝑎𝑡 𝑖𝑠, 𝑒𝑎𝑐ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑎 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑. 
𝑇ℎ𝑒 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑠 𝑓𝑜𝑟𝑚 𝑎 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 2𝜋 𝑡𝑜 10000 ·  2𝜋. 

• Encoder Self-Attention 

Each encoder layer has a multi-head self-attention mechanism as its initial sub-layer, which enables 

every position in the input sequence to pay attention to every other position. As shown below, the self-

attention mechanism is calculated. 
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 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (18) 

𝑤ℎ𝑒𝑟𝑒 𝑄 , 𝐾, 𝑎𝑛𝑑 𝑉 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦, 𝑎𝑛𝑑 𝑣𝑎𝑙𝑢𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 , 6. 
𝑄 , 𝐾, 𝑎𝑛𝑑 𝑉 are computed from the input embeddings and positional encodings. The value matrix's values are 

weighted using the distribution that results from the SoftMax function's computation of a distribution over the 

key matrix's values. A weighted total of the values from the self-attention mechanism is the output, and it is 

added to the input embeddings after being put through a normalization layer. 

• Multi-Head Attention 

The Attention module of the Transformer performs its calculations repeatedly and concurrently. These are 

referred to as Attention Heads each. The Attention module divides its Query, Key, and Value parameters N-

ways and independently routes each split through a different Head. A final Attention score is subsequently 

generated by combining all these related Attention calculations. With the use of a technique known as "multi-

head attention," the Transformer is better able to encode various relationships and nuanced aspects for each 

word [37]. 

 
Figure 7 Multi-head attention [37]. 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇 + 𝑀𝑎𝑠𝑘

√𝑑𝑘

) 𝑉 (19) 

 

𝑤ℎ𝑒𝑟𝑒 𝑄 , 𝐾, 𝑎𝑛𝑑 𝑉 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦, 𝑎𝑛𝑑 𝑣𝑎𝑙𝑢𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 , 6. 
• Feed-Forward Network 

The second sub-layer of each encoder layer is a position-wise fully connected feed-forward network. 

The feed-forward network is defined as: 

 𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2 (20) 

𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑊1, 𝑏1, 𝑊2, 𝑎𝑛𝑑 𝑏2𝑎𝑟𝑒 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑎𝑛𝑑 𝑏𝑖𝑎𝑠𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑖𝑛𝑒𝑎𝑟 𝑙𝑎𝑦𝑒𝑟𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
• Decoder Self-Attention 

The decoder also uses a multi-head self-attention mechanism, but it is slightly different from the encoder 

self-attention. Each location in the decoder can only focus on positions in the input sequence that the 

encoder has previously processed and positions in the decoder sequence up to the present position. This 

is how the decoder's self-attention mechanism is calculated [38, 39]: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
 𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (21) 

 
𝑤ℎ𝑒𝑟𝑒 𝑄 , 𝐾 , 𝑎𝑛𝑑 𝑉 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦, 𝑎𝑛𝑑 𝑣𝑎𝑙𝑢𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 
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𝑄 , 𝐾 , 𝑎𝑛𝑑 𝑉 are computed from the decoder input embeddings and positional encodings. The resulting 

distribution is used to weight the values in the value matrix, and the output of the self-attention mechanism 

is added to the decoder input embeddings and passed through a normalization layer. 

• Encoder-Decoder Attention 

The encoder-decoder attention mechanism is computed as follows: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
 𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (22) 

𝑤ℎ𝑒𝑟𝑒 𝑄 , 𝐾 , 𝑎𝑛𝑑 𝑉 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦, 𝑎𝑛𝑑 𝑣𝑎𝑙𝑢𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 

𝑄 , 𝐾 , 𝑎𝑛𝑑 𝑉 are computed from the decoder self-attention output and the encoder output, respectively [38]. 

• Feed-Forward Network 

Like the feed-forward network used in the encoder, the second sub-layer of each decoder layer is 

similarly a position-wise completely connected feed-forward network. 

• Output Layer 

A linear layer and a SoftMax function are applied after the output of the last decoder layer to produce the 

final output distribution over the vocabulary. The definition of the output layer is: 

 𝑃(𝑦𝑡|𝑦<𝑡 , 𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑡𝑊𝑜) (23) 

 𝑤ℎ𝑒𝑟𝑒 𝑦𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑡 − 𝑡ℎ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑦𝑚𝑏𝑜𝑙, 𝑦{<𝑡} 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑠𝑦𝑚𝑏𝑜𝑙𝑠,  

𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑊𝑜 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑙𝑎𝑦𝑒𝑟 

 𝑎𝑛𝑑 𝑃(𝑦𝑡|𝑦<𝑡, 𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 𝑦𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦  
 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. 

Implementation 

The transformer model consists of an encoder and a decoder. The encoder processes the input sequence while 

the decoder generates the output sequence. In this implementation, the encoder consists of a stack of eight 

transformer encoder layers each with ten attention heads. The encoder also includes a positional encoding 

layer, which adds information about the position of each token in the sequence. The encoder is followed by a 

linear layer, normalization, and ReLU activation functions. The decoder has five linear layers with ReLU 

activation functions and dropout regularization. It concatenates the output of the encoder with the input 

sequence and the resulting tensor is passed through the linear layers to generate the final output. The model's 

forward function takes a source sequence as input, generates a mask to prevent the model from attending to 

future tokens then applies positional encoding to the input and passes it through the transformer encoder. The 

output of the encoder is then normalized and passed through the decoder layers and the final output is returned. 

This implementation is flexible with several hyperparameters that can be adjusted such as the model's 

dimensionality, number of layers, dropout rate and the number of attention heads. 

Encoder Layer - nn.Transformer Encoder Layer is a building block of the transformer model that performs 

multi-head self-attention on the input sequence and applies a feedforward neural network (FFN) to the 

resulting representations. The layer takes an input tensor of shape (sequence_length, batch_size, d_model) 

and returns an output tensor of the same shape. 

During the self-attention step, the input tensor is split into num_heads smaller tensors, and each of these 

tensors is passed through an attention mechanism that computes the importance of each token in the 

sequence relative to the others. The outputs of these attention heads are then concatenated and passed 

through a linear layer to generate the attention output. 

The attention output is then passed through a two-layer feedforward neural network (FFN) that applies a 

ReLU activation function and dropout regularization to the intermediate representation. The output of the 

FFN is added to the input tensor using residual connections, and the resulting tensor is normalized using 

layer normalization. 

nn.TransformerEncoderLayer takes several hyperparameters, such as d_model, which sets the size of the 

input and output tensors, nhead, which sets the number of attention heads, and dim_feedforward, which sets 

the size of the intermediate representation in the FFN. The layer also includes dropout regularization to 

prevent overfitting during training. 

5.4 Performance Metrics  
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All models were implemented with four common performance metrics to evaluate them uniformly. The 

metrics used are mean square error, mean absolute error, akaike information criterion and bayesian 

information criterion.  

The main reason MSE is used as an evaluation metric in our prediction models is because it penalizes larger 

errors more heavily than smaller errors. Since the errors are squared before taking the average, larger errors 

have a greater impact on the final MSE value. This makes MSE particularly useful in regression problems, 

where the goal is to predict a continuous target variable. MAE is used because it is easy to interpret and gives 

a good sense of the magnitude of the errors in the model's predictions. It is also less sensitive to outliers. 

By using both metrics together, we can get a more comprehensive understanding of the performance of an ML 

model. Together, they can provide a more nuanced evaluation of the model's predictive power. While MSE 

and MAE provide the measure of model’s performance, they do not directly account for the complexity of the 

model. 

AIC and BIC, on the other hand consider both the goodness of fit and the complexity of the model. They 

penalize models with more parameters, thus avoiding overfitting and providing a trade-off between model 

complexity and goodness of fit. 

 𝑙𝑜𝑔𝑙𝑖𝑘 = −0.5 ∗ 𝑙𝑒𝑛(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠) ∗ 𝑙𝑜𝑔(𝑚𝑒𝑎𝑛(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠)2) − 0.5 ∗ 𝑚𝑜𝑑𝑒𝑙𝑝𝑎𝑟𝑎𝑚𝑠 (24.1) 

 𝐴𝐼𝐶 = −2 ∗ 𝑙𝑜𝑔𝑙𝑖𝑘 + 2 ∗ 𝑚𝑜𝑑𝑒𝑝𝑎𝑟𝑎𝑚𝑠 (24.2) 

 𝐵𝐼𝐶 = 𝑙𝑜𝑔(𝑙𝑒𝑛(𝑦𝑡𝑒𝑠𝑡)) ∗ 𝑙𝑒𝑛(𝑚𝑜𝑑𝑒𝑙𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑠) − 2 ∗ 𝑙𝑜𝑔(𝑚𝑠𝑒) (24.3) 

𝑊ℎ𝑒𝑟𝑒, 
𝑙𝑜𝑔𝑙𝑖𝑘: 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙. 
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠: 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠. 
mode𝑙𝑝𝑎𝑟𝑎𝑚𝑠:  𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙. 
𝑦𝑡𝑒𝑠𝑡: 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡. 
𝑚𝑠𝑒: 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 

6 Experimental Results 
 

6.1 Exploratory Data Analysis 
 

6.1.1 General Exploratory Data Analysis 

First steps in understanding data using EDA were to use Histogram [Figure 5]. Histograms when applied to 

inflation indices provide insights into the frequency distribution of each index. Analysis of the histograms 

reveals that the Headline Consumer Price Index exhibits a left-skewed distribution, while the other indices do 

not show any skewness. Conversely, the symmetrical distribution in the other indices implies that their data 

is evenly distributed around the centre of the histogram. This suggests that these indices may be less sensitive 

to changes in prices and have a more stable trend over time. The normal distribution observed in the Headline 

Consumer Price Index implies that there is a consistent trend in the rate of inflation during the analysed period, 

which may be attributed to factors such as economic growth, changes in government policies, and market 

fluctuations. 

 
Figure 5 Histogram plot of scaled inflation indices 
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Next step in EDA involves using Box plot [Figure 6]. Box plots are a useful tool particularly in the case of 

inflation indices, as they provide insight into central tendency, variability, and outliers. The Official Core 

Consumer Price Index appears stable, with minimal outliers and a median close to the 50th percentile. The 

Energy Price Index is more volatile, with more outliers and a median closer to the lower quartile. The Food 

Price Index has a similar range to the Official Core Consumer Price Index, but with a slightly higher median 

indicating a more rapid rate of escalation. The Headline Consumer Price Index has a wider range and more 

outliers, but a median close to the 50th percentile, making it a good representation of overall inflation trends. 

The Producer Price Index is the most volatile, with a wider range and more outliers than other indices, and a 

median closer to the 50th percentile, indicating higher producer prices overall. 

 
Figure 6 Box plot comparison of inflation indices 

Next, we use pair plot [Figure 7(a)] to understand the relationships between variables and identifying patterns 

or trends. It creates scatter plots for every pair of variables in the dataset, with each variable plotted against 

every other variable. Finally, we apply correlation analysis [Figure 7(b)] on all the inflation indices along with 

fuel data, the analysis show fuel data are more closely correlated to Producer price index. 

6.1.2 Timeseries Exploratory Data Analysis 

 

First step in Timeseries EDA is Autocorrelation Analysis that include autocorrelation plot [Figure 8(a)] 

(Appendix 4.1) and partial autocorrelation plot [Figure 8(b)] (Appendix 4.4). The ACF plot shows large 

number of lagged values with significant correlation, suggesting that the model is highly dependent on past 

values. The PACF plot shows a significant lag at lag 1, this suggests that there is a strong correlation between 

the time series and its first lagged value after accounting for the contributions of shorter lags. This may indicate 

that the time series exhibits some kind of trend or cyclical pattern that occurs on a regular basis, such as a 

daily or weekly seasonality. 

 

 
Figure 7 a) Pair plot (left) and b) Tree map (right) for correlation Analysis on Inflation indices along with Fuel data. 
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Figure 8 a) Autocorrelation plot(left) b) Partial Autocorrelation plot (right) 

Next, we go ahead and plot monthly and quarterly plot to explore the repeating patterns. However, the monthly 

[Figure 9(a)] (Appendix 4.5) and quarterly plots [Figure 9(b)] (Appendix 4.6) show the same graph for all 

months and quarters, this suggests that the time series does not exhibit any such patterns at these frequencies. 

  
Figure 9 a) Monthly(left) b) Quarterly plot(right)     

Finally, we end this section by performing timeseries decomposition [40] (Appendix 4.7) and discover that 

model is additive, has seasonality with yearly frequency, because the trend line exhibits non-linear behaviour 

and seasonal component remains constant over a period of year. Illustration of an index is shown in [Figure 

10]. 

 
Figure 10 Timeseries decomposition of Energy price index showing Trend, seasonality, and residuals. 

6.1.3 Principal Component Analysis 

PCA was implemented on five inflation indexes chosen along with petrol and diesel fuel data, these principal 

components shown in [Figure 11]  would later be used in multivariate prediction using Deep Learning models, 

our analysis show that four principal components can preserve all (99.5%) of the variances in inflation. The 

four principal index components are Producer Price, Energy, Core Consumer and Food. The principal 

components in newer orthogonal spaces that explain the original subspace are described in [Table 3]. 
Table 3 Principal Components explaining the variance of inflation and fuel indices. 

 Official Core 

Consumer 

Price Index 

Energy 

Price 

Index 

Food Price 

Index 

Headline 

Consumer 

Price Index 

Producer 

Price Index 

Petrol Diesel 

PC1 0.3878 0.2032 0.40214 0.39804 0.4113 0.39866 0.40009 

PC2 -0.23537 0.92123 -0.20529 -0.20317 0.02436 0.04387 0.09998 

PC3 0.52682 0.27312 -0.10579 0.39867 0.03328 -0.50637 -0.46929 

PC4 -0.36138 0.06842 0.72859 -0.1491 0.32195 -0.41757 -0.18337 
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Figure 11 Three-dimensional view of first four components (left) and variance preserved graph (right) 

6.2  Prediction Models 
 

In our research project, we aim to forecast future index movements. To achieve this, we begin by selecting a 

basic model and gradually choose more complex models while examining its behaviour in response to inflation 

data to each model. We then employ defined metrics to evaluate each model's performance over a year-long 

period and ultimately selecting three models that demonstrate robust data responsiveness and capacity for 

accurate predictions over the next five years. These models are subjected to rigorous evaluation, allowing us 

to compare their performance against one another. [Figure 12] provides a visual representation of the models 

that we have identified as suitable for use in our current research project. 

 
Figure 12 Statistical and Deep Learning models used in Inflation Forecasting 

In the following sections, petrol price is used in the report to explain the performance of model, while other 

indices are added to appendix with relevant references. 

6.2.1 Statistical Forecasting Models 
 

Exponential smoothing is a simple yet effective method for time series forecasting that places more emphasis 

on recent data points while gradually reducing the impact of older ones. This approach is particularly useful 

for predicting inflation rates, which can be highly volatile and sensitive to economic events and policy 

decisions. However, the results [Figure 13] (Appendix 5.1) show that the underlying data generating process 

is stable over time and produces inaccurate forecasts in the presence of shocks. 

 
Figure 13 Exponential Smoothing Predictions 
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The next approach employed was the AR model, which is well-suited for datasets with strong patterns and 

commonly used for short-term forecasting. Autocorrelation analysis identified a significant trend, serving as 

the basis for short-term prediction. The dataset used for model fitting and prediction was stationary, which is 

a prerequisite for the AR model. The evaluation of the model indicated minimal mean square errors concerning 

the selected indices (Appendix 4.3), and it exhibited satisfactory predictive accuracy in the initial stages. 

However, as the prediction horizon extended, the model's accuracy decreased, as shown in [Figure 14(a)] 

(Appendix 5.2).MA model was the next method implemented with “q”, the order of seasonality as 15. The 

results [Figure 14(b)] (Appendix 5.3) for this this method also begins to diverge after initial steps, as the 

average required to calculate the next steps depend on previous steps and they begin to lose accuracy for the 

newly predicted steps. 

        
Figure 14 a) AR model prediction (left) b) MA model prediction (right) 

ARIMA and SARIMA are the final models implemented as part of the statistical forecasting models. They 

can forecast on non-stationary data and is often used to make medium to long-term predictions. ARIMA was 

trained and predicted on stationary data while SARIMA on non-stationary data. The results [Figure 15] 

(Appendix 5.4, 5.5) for these methods show they yield good results when the data is linear but fail to capture 

sudden shocks which has been often the case in near past. 

  
Figure 15 (a) ARIMA (left) and (b) SARIMA (right) Model Predictions 

6.2.2 Deep Learning Forecasting Models 

Deep learning models are advantageous in capturing intricate patterns in time series data, which may be 

challenging to identify using statistical models. This is attributed to their vast number of parameters, which 

can be fine-tuned to capture the nonlinear relationships existing between past and future data points. 

The comparison of Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), and Transformer 

models in time series forecasting [Figure 16] (Appendix 5.6) has shown promising results compared to 

traditional statistical models. RNN models are effective in handling sequential data by passing information 

from one time step to the next. LSTM models, on the other hand, utilize a memory cell to maintain information 

for extended periods, thus enhancing their ability to capture long-term dependencies in the data. Transformer 

models, which were originally developed for natural language processing tasks, have also demonstrated their 

effectiveness in time series forecasting by leveraging attention mechanisms to identify important patterns in 

the data. 

 
Figure 16 Deep Learning Model Predictions 

A comparative investigation of loss functions [Figure 17] in deep learning models revealed a general tendency 

for transformer models to outperform RNN and LSTM models in predicting inflation. Interestingly, the LSTM 
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model exhibited an abnormally high loss for the Energy Price Index. This outcome can be attributed to the 

sudden fluctuations in energy prices that occurred after a decade of stability, particularly after 2020, which 

posed a challenge for the LSTM model in capturing such abrupt changes within small duration. 
 

 
Figure 17 Bar plot to compare deep learning model losses. 

The challenging and nonlinear nature of forecasting inflation indices can be difficult to quantify and predict 

accurately by traditional statistical methods. This complexity poses a challenge for traditional statistical 

models that may struggle to capture the intricate relationships and patterns in the data, leading to inaccurate 

predictions. A promising alternative lies in deep learning models, which can automatically learn intricate 

patterns and relationships in the data, making them better suited to forecast inflation. After comparing the 

outcomes with three deep learning models, it revealed that there will be a decrease in the prices of petrol 

[Figure 18] and diesel (Appendix 5.7) in the upcoming future. The recurrent neural network (RNN) and long 

short-term memory (LSTM) models anticipate a continuous decrease. However, the transformer model 

predicts an upward trend after three years due to the historical pattern of price increase in the past. 

 
Figure 18 Five-year inflation forecasts by deep learning model 

6.2.3 Performance Metrics 

 
Figure 19 Performance metrics 
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In this study, four different metrics were employed, namely MSE, MAE, AIC, and BIC. The outcomes for 

each index are presented in Appendix 5.8, while the [Figure 19] provides an overview of the comparison 

across all the indices and metrics. The MSE and MAE metrics demonstrate that the values are comparatively 

lower for statistical models than for deep learning models. Although MSE and MAE are commonly used for 

assessing the goodness of a model, the AIC and BIC metrics are more appropriate for evaluating deep learning 

models. This is because they provide a more comprehensive measure of model performance that considers 

both accuracy and model complexity. In particular, the AIC and BIC values for RNN and LSTM models were 

relatively high indicating that these models are more prone to overfitting than the Transformer model. 

7 Discussion 
 

The first insight into our question; “What is the impact of the fuel index on other indexes in inflation 

forecasting in the UK” was through our correlation analysis results. The autocorrelation plots demonstrated a 

strong correlation between fuel indexes (diesel and petrol), and other indexes. After seeing these results, we 

wanted to understand how the autocorrelation plots’ correlation values could change after utilising our 

predictive inflation data from each of our deep learning models.  
 

RNN LSTM Transformer 

 
   

 

Figure 20 Autocorrelation results using prediction data of each Deep learning model; RNN (Left), LSTM (Middle), and 

Transformer model (Right) 

An interesting observation made, was that the RNN data in the correlation plot (Figure 23)  produced 

extremely high positive correlation results, the transformer model also only produced positive correlation 

results. Contrastingly, the LSTM model produced a greater proportion of negatively correlated results. A 

possible reason for this is that the LSTM prediction produced a smaller decrease in diesel and petrol prices for 

the timeseries prediction, whereas the comparison model for RNN, and Transformer model had a more 

significant decrease in future fuel prices, to roughly the levels seen in 2020. In addition to this, energy price 

index seems to have a negative correlation between producer price index, headline consumer price, food price 

and consumer price. Whereas energy price index is positively correlated with petrol and diesel indicating the 

fact that energy price index could be overlaying with these fuel indexes. 

Interestingly, the transformer model has the worst MSE and MAE metrics of all the models. At first, these 

results are counterintuitive, as typically higher error suggests poorer performance. However, this could be due 

to the transformer model being overly complex, leading to greater difficulty in optimising the model. 

Alternatively, a possible reason for such high errors in these metrics of the transformer model could be due to 

overfitting. On the topic of overfitting, the LSTM produced higher errors in MSE and MAE than the RNN. 

This is not what we expected since LSTMs are able to handle long term dependencies better (explained in the 

LSTM section). We put this down to the LSTM requiring more data than the data we supplied from 2003-

2022. LSTMs require larger quantities of data; therefore, it is plausible that the LSTM overfitted the data we 

supplied. 

When trying to answer our question and gain the most valuable insight into the impact of fuel prices on other 

indexes in inflation forecasting, it was important we chose the best neural network for analysis. We decided 

that although the transformer model produced the worst metrics for MAE and MSE, it produced by far the 
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best AIC and BIC metrics (Appendix 5.8). As a result, we went ahead with the transformer model to visualise 

the impact of fuel index on other indexes. The AIC and BIC values for the transformer model are negative 

values, whereas the RNN and LSTM produced positive AIC and BIC values. The lower value for AIC and 

BIC does not equate to a better model, but the fact that the difference between the transformer model and other 

models AIC and BIC values is greater suggests the transformer model is a better fit. 

Moreover, in the first paper to introduce the transformer model [41], the transformer outperformed the RNN 

model in language translation tasks. Notably, our transformer model utilised a seq2seq architecture allowing 

it to process more complex data, such as our inflation data which tends to hold seasonality and can be affected 

by drastic changes to the economic climate. Whilst the architecture of the transformer model differs to the 

LSTM, it can handle long term dependencies through its attention mechanism. The self-attentive mechanism 

within a transformer disregards analysis in a chronological order, allowing the model to dispel chances of 

suffering the vanishing gradient problem.  This allows the transformer to perform better than the RNN model, 

in addition, it is impossible to allow parallelization within an RNN but is possible in transformer models. 

 

Although Transformer models are a new and exciting architecture, the fact that Transformer models still have 

not been explored in great depth, creates a black box of information to be uncovered. Transformer models 

typically have a larger black box than LSTM and RNN models, but of course this depends on the size of neural 

network, such as the number of layers. Therefore, although the size of the black box may differ from task to 

task, the Transformer model was certainly the most elusive model in our project. The extremely complex 

architecture and large number of hyperparameters, including the number of attention heads, and the dropout 

rate demonstrates the difficulty to tune the model to increase performance. Therefore, if we were trying to 

improve our Transformer model we would increase the number of attention heads, or experiment using 

different hyperparameters, such as changing the batch size. The reason we were unable to do these alterations 

was due to the time constraints of our project, as well as the high computational requirement, and large 

memory requirements. 

Focussing our attention onto the LSTM correlation values that were gathered, the highest correlation values 

were found between the producer price index (PPI) and the rest of the indexes (core consumer price (CCP), 

energy price, food price, consumer price, petrol, and diesel). PPI measures wholesale inflation and is 

calculated based on the changes in prices paid to producers of goods and services. Fuel prices directly impact 

transportation, energy, and manufacturing expenses, as well as the overall supply chain costs. Therefore, since 

rising fuel prices increases the transportation expenses, it results in a surge of manufacturing costs of 

transferring raw materials, components, and finished goods from one location to another, hence directly 

affecting PPI. The two indexes least correlated with petrol and diesel appears to be CCP index, a 0.79 

correlation value with petrol and 0.81 correlation value with diesel.  Therefore, suggesting that fuel index has 

least impact on the ability to forecast CCP than other indexes. 

8 Dashboard 
 

Our solution is presented in the form of an interactive dashboard (link) implemented in plotly dash that allows 

users to visualise inflation data for over 70 countries from 2003-2023, as well as view forecasts for future 

inflation rates in the users’ desired country (Appendix 6.1). Users are also granted the ability to decide on a 

specific period that they may be interested in. 

Upon entering the site, users can select a year range using a sliding tool to view the different inflation indices 

in the form of line plots, histograms, violin plots, and pair plots (Appendices 6.3, 6.4, 6.5). They can then 

select a specific index and again select year range to view the time series decomposition plot (Appendix.6.6), 

which displays the trend, seasonal plot, and residual plot. Furthermore, users are presented with a 3D map of 

the world (Appendix.6.7) where they can select a country and assess the inflation indices for a chosen month 

up to 2022 and index price (Appendix.6.8). Lastly, users can use the inflation prediction tool to see the forecast 

within a specified date range and can also select the degree of precision from low, medium, and high that is 

preferable. 

We achieved this firstly by filtering all the countries within the original data set that had all the information 

required to produce all the illustrations. HTML is used to create the drop-down list for the available countries, 

the month/year selection slider and general interface design of the dashboard. A ‘call back’ function from the 

https://638889fe-2546-41ac-8d2f-f9d8b29d307c.deepnoteproject.com/
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dash module is used so that plots (e.g., line, pair etc) only need to be implemented once and it applies the same 

plot for each chosen country and date range and updated in real-time when the user changes options. This also 

applies for the time series decomposition and the world map. Additionally with the world map an if else is 

used to decide what to display when a certain index is chosen. For the prediction plots, LSTM model is 

implemented. 

Additionally, the dashboard has been deployed on Google Cloud Platform that can be accessed here. All the 

plots available on deepnote can also be visualised in GCP except the prediction model due to memory 

constraints in the free tier of GCP service.  

Overall, the site provides interactive visualisations, making it an ideal resource for students, academics, and 

other people that show interest in this field. 
 

9 Conclusion 
Inflation is a multifaceted phenomenon that is affected by a variety of factors including interest rates, 

consumer spending, exchange rates and government policies. These factors often have intricate relationships 

with each other making it difficult to accurately model their impact on inflation. The present study aimed to 

forecast inflation indices and fuel prices for the next five years to understand how fuel prices affect each 

individual inflation parameter. Multiple indices were considered and predicted to comprehend the effects of 

fuel prices on these indices. After extensive data preparation, we applied eight statistical and machine learning 

models to the dataset. The models predicted a decline in fuel prices in the near future after a historical rise in 

the past couple of years, while other indices were expected to follow similar trends due to their strong 

correlation with fuel prices. These analyses and predictions hold true only if the underlying dynamics remain 

stable over time. Based on this study, we suggest two recommendations. First, fuel prices must be controlled 

because prices and inflationary indices are directly dependent on fuel prices, and volatility in fuel prices could 

translate to volatility of the entire economy. Second, governments should promote the use of alternative energy 

sources such as electric vehicles, biofuels, and renewable energy to reduce demand for fossil fuels and help 

stabilize prices. Currently, the energy index has the highest correlation, ranging from 0.9 to 0.99, showing 

direct dependence on fossil fuels. Decreasing dependence on fossil fuels could be helpful in cushioning the 

volatility of fuel markets. 

 

9.1  Scope for further research 
It is evident that Long Short-Term Memory (LSTM) models excel in capturing temporal dependencies in time 

series data while transformer models are known for their ability to parallel process information. Therefore, to 

achieve more accurate predictions of inflation data an ensemble model can be developed that balances these 

two factors. By combining the strengths of both LSTM and transformer models an enhanced ensemble model 

can be created that can more accurately predict inflation data 

While in our study, we incorporated wide range of indices that get factored in while inflation prediction, 

additional factors such as social trends, and weather patterns can be included into time series models that can 

help improve their accuracy and make them more useful for decision-making. 

For the deep learning models, more studies could be done on hyperparameter tuning. In the current research 

project hyperparameters have been tuned on learning rate and number of epochs, these could be expanded to 

include multiple types of optimisers, the number of connected layers, increasing the number of stages. For 

transformer model, hyperparameters such as the number of layers, the number of attention heads, the dropout 

rate, the learning rate, and the batch size can be tuned to improve accuracy. 

 

 

https://andromeda-dashboard-2ms2zpkv2q-ew.a.run.app/


  

  

 

iv 

10 References 
 
[1] J. Fernando, “Inflation,” Investopedia, Mar. 14, 2023. Available: https://www.investopedia.com/terms/i/inflation.asp%20 

 

[2] D. Meyer, “The Impact of Changes in Fuel Prices on Inflation and Economic Growth in South Africa,” Nov. 2018, doi: 

https://doi.org/10.5281/zenodo.1569053%20. 

 

[3] C. Bermingham, “Quantifying the Impact of Oil Prices on Inflation Quantifying the Impact of Oil Prices on Inflation,” Jan. 

2009. Available: https://www.centralbank.ie/docs/default-source/publications/quarterly-bulletins/quarterly-bulletin-signed-

articles/quantifying-the-impact-of-oil-prices-on-inflation.pdf%20 

 

[4] K. Kpodar and B. Liu, “The distributional implications of the impact of fuel price increases on inflation,” Energy Economics, 

vol. 108, no. 1–2, p. 105909, Apr. 2022, doi: https://doi.org/10.1016/j.eneco.2022.105909. 

 

[5] G. Przekota, “Do High Fuel Prices Pose an Obstacle to Economic Growth? A Study for Poland,” Energies, vol. 15, no. 18, p. 

6606, Sep. 2022, doi: https://doi.org/10.3390/en15186606. 

 

[6] P. Bolton, “Petrol and diesel prices,” House of Commons Library Briefing Paper no. 4712, Mar. 31, 2023. 

 

[7] ONS, “CPIH ANNUAL RATE 00: ALL ITEMS 2015=100 - Office for National Statistics,” Ons.gov.uk, Feb. 15, 2023. 

Available: https://www.ons.gov.uk/economy/inflationandpriceindices/timeseries/l55o/mm23 

 

[8] Office for National Statistics, “Cost of Living Insights - Office for National Statistics.” Www.ons.gov.uk, 2023. Available: 

https://www.ons.gov.uk/economy/inflationandpriceindices/articles/costoflivinginsights/energy. 

 

[9] A. Atkeson and L. E. Ohanian, “Are Phillips Curves Useful for Forecasting Inflation?” Quarterly Review, vol. 25, no. 1, Dec. 

2001, doi: https://doi.org/10.21034/qr.2511. 

 

[10] A. Almosova and N. Andresen, Nonlinear Inflation Forecasting with Recurrent Neural Networks, 2019. Available: 

https://www.ecb.europa.eu/pub/conferences/shared/pdf/20190923_inflation_conference/L2_Almosova.pdf.  

 

[11] H. Jongrim; K. M. Ayhan; O. Franziska, "One-Stop Source: A Global Database of Inflation." Policy Research Working 

Paper; No. 9737. World Bank, Washington, DC.", 2021. 

 

[12] F.S. Mishkin, “The economics of money, banking, and financial markets”. Pearson Education, 2007. 

 

[13] B. Fattouh, L. Kilian, and L. Mahadeva, “The Role of Speculation in Oil Markets: What Have We Learned so Far?”, The 

Energy Journal, vol. 34, no. 3, pp. 7–33, Jul. 2013, doi: https://doi.org/10.5547/01956574.34.3.2 

 

[14] FAO, “Food price indices”, Food and Agriculture Organization of the United Nations, 2022. 

 

[15] O. Blanchard and D. R. Johnson, Macroeconomics, 6th ed. Boston: Pearson, 2013. 

 

[16] U.S. Bureau of Labor Statistics. Producer Price Indexes - October 2021, Oct. 2021. Available: https://www.bls.gov/ppi/ 

 
[17] Department for Energy Security and Net and Department for Business, Energy & Industrial Strategy, “Road Fuel Price 

Statistics Providing Average UK Retail ‘pump’ Prices on a Weekly Basis,” 2022. Available: 

https://www.gov.uk/government/statistics/weekly-road-fuel-prices (accessed Feb. 13, 2023). 

 
[18] M. Loretan, & P. C. Phillips, “Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with 

applications to several financial datasets”, Journal of empirical finance, 1(2), 211-248, 1994. 
 
[19] D. A. Dickey and W. A. Fuller, “Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” Journal of 

the American Statistical Association, vol. 74, no. 366a, pp. 427–431, Jun. 1979, doi: https://doi.org/10.2307/2286348 
 
[20] J. Shlens, “A Tutorial on Principal Component Analysis.” 

 

[21] J. Leban, “Theory of Principal Component Analysis (PCA) and Implementation on Python,” May 18, 2020. Available: 

https://towardsdatascience.com/theory-of-principal-component-analysis-pca-and-implementation-on-python-5d4839f9ae89%20 

(accessed Apr. 10, 2023). 

https://doi.org/10.3390/en15186606
https://www.ons.gov.uk/economy/inflationandpriceindices/timeseries/l55o/mm23
https://www.ons.gov.uk/economy/inflationandpriceindices/articles/costoflivinginsights/energy
https://doi.org/10.21034/qr.2511
https://www.bls.gov/ppi/
https://www.gov.uk/government/statistics/weekly-road-fuel-prices


  

  

 

v 

[22] Z. Jaadi and B. Whitfield, “A Step-by-Step Explanation of Principal Component Analysis (PCA),” Aug. 08, 2022. 

 

[23] E. S. Gardner, “Exponential smoothing: the State of the Art,” Journal of Forecasting, vol. 4, no. 1, pp. 1–28, 1985, doi: 

https://doi.org/10.1002/for.3980040103. 

 

[24] B. Billah, M. L. King, R. D. Snyder, and A. B. Koehler, “Exponential smoothing model selection for 

forecasting,” International Journal of Forecasting, vol. 22, no. 2, pp. 239–247, Apr. 2006, doi: 

https://doi.org/10.1016/j.ijforecast.2005.08.002 

 

[25] R. S. Tsay, “Analysis of Financial Time Series”, Wiley. pp. 24-97, 2010. 

 

[26] H. Akaike, “A Bayesian analysis of the minimum AIC procedure,” Annals of the Institute of Statistical Mathematics, vol. 

30a, no. 1, pp. 9–14, Dec. 1978, doi: https://doi.org/10.1007/bf02480194 
 
[27] C. B. A. Satrio, W. Darmawan, B. U. Nadia, and N. Hanafiah, “Time series analysis and forecasting of coronavirus disease in 

Indonesia using ARIMA model and PROPHET,” Procedia Computer Science, vol. 179, p. 529, Jan. 2021, doi: 

https://doi.org/10.1016/j.procs.2021.01.036 

 

[28] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 2nd ed. Heathmont, Vic.: Otexts, 2018, pp. 

221–229. Available: https://otexts.com/fpp2/stationarity.html 

 

[29] K. Foo, “Seasonal lags: SARIMA modelling and forecasting,” Medium, Jan. 03, 2018. Available: 

https://medium.com/@kfoofw/seasonal-lags-sarima-model-fa671a858729 

 

[30] G. Petneházi, “Recurrent Neural Networks for Time SeriesForecasting,” Doctorate, University of Debrecen, 2019. Accessed: 

Apr. 26, 2023. [Online]. Available: 

https://www.researchgate.net/publication/330102696_Recurrent_Neural_Networks_for_Time_Series_Forecasting 

 

[31] K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting Across Time Series Databases using Recurrent Neural Networks on 

Groups of Similar Series: A Clustering Approach,” arXiv:1710.03222 [cs, econ, stat], vol. 140, Sep. 2018, Accessed: Apr. 24, 

2023. [Online]. Available: https://arxiv.org/pdf/1710.03222.pdf 

 

[32] J. Zhang, Y. Zeng, and B. Starly, “Recurrent neural networks with long term temporal dependencies in machine tool wear 

diagnosis and prognosis,” SN Applied Sciences, vol. 3, no. 442, Mar. 2021, doi: https://doi.org/10.1007/s42452-021-04427-5 

 

[33] S. Hochreiter, “The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem 

Solutions,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 06, no. 02, pp. 107–116, Apr. 

1998, doi: https://doi.org/10.1142/s0218488598000094 

 

[34] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget: Continual Prediction with LSTM,” Neural Computation, 

vol. 12, no. 10, pp. 2451–2471, Oct. 2000, doi: https://doi.org/10.1162/089976600300015015 

 

[35] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) 

network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132306, Mar. 2020, doi: https://doi.org/10.1016/j.physd.2019.132306 

 

[36] A. Vaswani et al., “Attention Is All You Need,” Jan. 2017, Available: http://arxiv.org/abs/1706.03762 

 

[37] K. Doshi, “Transformers Explained Visually (Part 3): Multi-head Attention, deep dive,” Towards Data Science, Jan. 17, 

2021. Available: https://towardsdatascience.com/transformers-explained-visually-part-3-multi-head-attention-deep-dive-

1c1ff1024853%20 (accessed Apr. 26, 2023). P7 

 

[38] K. Doshi, “Transformers Explained Visually (Part 2): How it works, step-by-step,” Towards Data Science, Jan. 02, 2021. 

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34 (accessed Apr. 

26, 2023). P6 

 

[39] K. Doshi, “Transformers Explained Visually (Part 1): Overview of Functionality,” Towards Data Science, Dec. 13, 2020. 

https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452 (accessed Apr. 

26, 2023). P8 

 

[40] M. West, “Miscellanea. Time Series Decomposition,” Biometrika, vol. 84, no. 2, pp. 489–494, Jun. 1997, doi: 

https://doi.org/10.1093/biomet/84.2.489%20 

[41] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you 

need. Advances in neural information processing systems, 30. 

https://doi.org/10.1016/j.procs.2021.01.036
https://towardsdatascience.com/transformers-explained-visually-part-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visually-part-3-multi-head-attention-deep-dive-1c1ff1024853
https://doi.org/10.1093/biomet/84.2.489


  

  

 

vi 

11  Group work 
 

The team worked very well together. The team had no issues or any major disagreements during the project. 

Each member of the group showed initiative and effort to help when we were faced with a problem, and each 

of us would offer our opinion on alternative solutions. Additionally, every member demonstrated 

resourcefulness in finding solutions to our problems using the literature plus internet resources.  For example, 

a difficulty in coding the transformer model was faced, but we were able to fix this. To conclude, the team 

showcased a massive amount of resilience and determination, which helped us to succeed as a team.  

 

Communication was frequent between us all on “Teams”, as well as on WhatsApp. We would hold weekly 

meetings, if not multiple meetings a week. In each meeting, we would help each other out on each other’s 

respective sections, if help was needed.  

 

The group kept organised throughout the project using a Gantt chart. This enabled us to finish our solution to 

the project prior to the end of semester, allowing us to have a break at the end of semester. This level of 

organisation and motivation helped the team to complete work on time. 

 

We are delighted with the calibre of work that has been produced and sincerely believe that it is a testament 

to the excellent standards upheld by our group. 
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12  Individual contributions 
 

 

12.1 – Farah Yesilkaya 

 

My contributions for the project are as follows: 

 

1. General Exploratory Data Analysis (EDA): I helped to produce data visualisations with the rest of 

the group, such as the histograms, and line plots. This enabled us to understand the dataset better. 

 

2. Principal Component Analysis: Coded the PCA section in Deepnote, I found the most important 

indexes in our data. To do this, it involved computing the covariance matrix, and also finding the 

corresponding eigenvalues and eigenvectors. 

 

3. LSTM: I worked with Vijay Jawali to help code the LSTM deep learning model to do deep learning 

time series forecasting of the inflation data. The LSTM was able to deal with our vanishing gradient 

problem that the RNN faced, allowing us to have a greater insight into the future predictions of 

inflation. 

 

4. Organising the Team: Helped with organising meetings, contacting TA’s with issues, and submitting 

work. As well as this I made notes to help our groups understanding of tasks in each meeting. 

 

The following sections were my contributions for the report: 

 

Section 1.2 – Relevant works  

Section 5.2.3 – Moving Average Model 

Section 5.3.2 – LSTM section 

Section 7 – Discussion 

 

My assessment of the group is as follows: 

 

I think that everyone was determined to do well, and this was demonstrated by the high level of 

determination and contributions that everyone made, 

I am very thankful for my team, our group dynamic was excellent, there was never any friction, and 

communication was never an issue. 

I am grateful for everyone on my team for their hard work, and continued dedication right from the start of 

the project to the very end. 
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12.2 – Priyanshu Jha 

 

My contributions for the project are as follows: 

 

Contributions were made in data preparation, general exploratory data analysis (EDA), and the application 

of the Transformers model during the duration of this project. The contributions listed below are: 

 

1. Data Preparation: Oversaw gathering, processing, and cleansing the raw data to get it ready for 

analysis. In addition, found and fixed data quality problems to guarantee the data's accuracy and 

completeness. Overall, the effort put forth to prepare the data ensured that it was fit for analysis. 

 

2. General Exploratory Data Analysis (EDA): Conducted the exploratory data analysis to gain insights 

into the data and identify patterns or trends. Have used a range of data visualisation techniques, such 

as scatterplots, boxplots, and histograms, to visualise the data. EDA's work aided in improving data 

comprehension and provided information for further modelling choices. 

 

 

3. Transformers Model Implementation: Worked with Vijay and Moronfolu to implement the 

Transformers model using Python and PyTorch. Developed scripts to train, validate, and test the 

model, it also included the tuning of hyperparameters of the model, such as the number of layers and 

the learning rate, to optimize model performance. The work on the Transformers model has made it 

possible to classify data with a great deal of accuracy. 

 

The following sections were my contributions for the report: 

 

Section 5.1.1 – Principal Component Analysis 

Section 5.2.5 – SARIMA model 

Section 5.3.3 – Transformer Model 

 

My assessment of the group is as follows: 

 

Overall, team showed a high level of cooperation throughout the project. Everyone worked well together 

and were willing to help each other out when needed. Overall, team showed great communication as we had 

regular meetings about the project and completed the project with good coordination. 
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12.3 – Moronfolu Durodola 

 

My contributions for the project are as follows: 

 

1. Organisation: At the start of the project, I was responsible for creating the Gantt chart. I then utilised 

this to ensure that we remained on track throughout the process and updated it where necessary. 

Alongside this I also ensured we were on track for the progress check and mid-term demonstration. 

Doing this made certain that we completed all aspects in a timely fashion. 

 

2. SARIMA: I contributed at the initial stage of implementing the SARIMA model which mainly 

consisted of getting the train and test sets and defining the model. 

 

3. Transformer model:  The transformer model was implemented by Priyanshu and me as part of the 

deep learning models to forecast inflation as accurately as possible. I defined the encoder-decoder 

function, and also trained, validated, and tested the model using our data. I also worked on the 

visualisations involved with this model. 

 

4. Model evaluation: At this stage, I was mainly involved with creating the plots to compare the 

different results of the models as well as compare the different indexes. This was useful for us to 

analyse which model produced the best outcome. 

 

The following sections were my contributions for the report: 

 

Section 1 – Introduction  

Section 1.1 – Question development 

Section 3.2 – Timeseries Data Visualisations 

Section 5.2.4 – ARIMA Model 

Section 5.3.1 – Recurrent Neural Network 

Section 8 – Dashboard  

 

My assessment of the group is as follows: 

 

Overall, I enjoyed working within this group as each member demonstrated a high level of work ethic 

throughout this process which also encouraged me to make every effort in completing this project. Our 

frequent interactions made it easier to track our progress as well as support each other where needed. 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

  

 

x 

12.4 – Vijay Jawali 

 

My contributions for the project are as follows: 

 

1. At data retrieval stage, my contributions included discovering and collecting source data for inflation 

and fuel data from world bank and U.K Govt websites. 

2. My contributions in EDA stage consisted of timeseries data visualisation such as plotting 

Autocorrelation and Partial Autocorrelation plots, Monthly and Quarterly plots and Timeseries 

decomposition plots. 

3. In the data preparatory stage, I was responsible for data validation, conducting parametric and non-

parametric stationarity tests and converting non-stationary data to stationary. 

4. In the modelling stage, I implemented Exponential smoothing model, AR model, MA model, 

ARIMA model and SARIMA model in statistical modelling. For Deep Learning model, I was 

responsible for Implementing RNN model. Additionally, I was responsible for implementing 

performance metrics for all models implemented. 

5. For the dashboard, I was responsible for implementing country selection, year range selection, line 

plot, histogram, violin plot, pair plot, time series decomposition plot, Inflation Forecasting using 

LSTM on plotly and deployment of dashboard on Google Cloud Platform using docker. 

6. Assisted Priyanshu and Rhoda in Implementation of Inflation Forecasting using Transformer model 

along with Hyperparameter tuning. 

7. I was responsible for implementing Model Evaluation notebook and metrics visualisations. 

 

The following sections were my contributions for the report: 

 

Section 2 – Data 

Section 3 – Stationarity 

Section 5.2.1 – Exponential Smoothing 

Section 5.2.2 – Statistical Models (AR)  

Section 5.4 – Performance Metrics 

Section 6 – Experimental Results 

Section 9 – Conclusion 

 

My assessment of the group is as follows: 

 

We had regular meetings on team apart from TA meetings and everyone was an active participant. 

We had open and frank discussions on every topic in the meeting, additionally we also had a group chat as 

means to communicate. 

Team was fluid and open to change course whenever it was needed, contrary points were encouraged and 

discussed with utmost seriousness, and I appreciate the team for having professional courtesy during all 

meeting. 

We prepared a Gantt chart at the beginning of project and every member of the team had their work 

completed with dedication. 

I am thankful to T.A and team for their guidance during the entire time, they helped me improve my skills, 

especially during the project report preparation. 
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Appendices 
 

Appendix 0 

 

Link to Deepnote Project: https://deepnote.com/workspace/andromeda-data-science-group-project-
c0ac1109-a8e0-4436-b4de-5b1043d1159a/project/Data-Science-Group-Project-638889fe-2546-41ac-
8d2f-f9d8b29d307c 

 

GitHub Link: https://github.com/vijayjawali/Andromeda.git 

 

Link to Dashboard: https://638889fe-2546-41ac-8d2f-f9d8b29d307c.deepnoteproject.com/ 

 

Link to Dashboard on GCP: https://andromeda-dashboard-2ms2zpkv2q-ew.a.run.app/ 

source code: https://github.com/vijayjawali/andromeda-dashboard.git 

 

Steps to Initiate Dashboard on Deepnote:  

a) Navigate to Andromeda project on Deepnote. 

b) Navigate to Notebook named Dashboard. 

c) Clear the existing variables. 

d) Run the whole notebook. 

e) Click on dashboard link. 

 

Appendix 1 

Appendix 1.1 

ccpiData = pd.read_csv('ccpi_m.csv') 

ccpiData = ccpiData[ccpiData['Country Code'] =='GBR'].iloc[:,4:] 

ecpiData = pd.read_csv('ecpi_m.csv') 

ecpiData = ecpiData[ecpiData['Country Code'] =='GBR'].iloc[:,4:] 

fcpiData = pd.read_csv('fcpi_m.csv') 

fcpiData = fcpiData[fcpiData['Country Code'] =='GBR'].iloc[:,4:] 

hcpiData = pd.read_csv('hcpi_m.csv') 

hcpiData = hcpiData[hcpiData['Country Code'] =='GBR'].iloc[:,4:] 

ppiData = pd.read_csv('ppi_m.csv') 

ppiData = ppiData[ppiData['Country Code'] =='GBR'].iloc[:,4:] 

 

 

Appendix 1.2 

rawDF = pd.concat([ccpiData, ecpiData, fcpiData, hcpiData, ppiData]) 

rawDF = rawDF.T 

rawDF.rename(columns=rawDF.iloc[0,:], inplace = True) 

rawDF = rawDF.tail(-1) 

rawDF.drop(rawDF.tail(1).index,inplace=True) 

time = pd.DatetimeIndex([i[:-2]+'-'+i[-2:] for i in rawDF.index]) 

rawDF = rawDF.set_index(time) 

rawDF['Energy Price Index'] = pd.to_numeric(rawDF['Energy Price Index']) 

df = rawDF.fillna(method='ffill').fillna(method='bfill') 

 

Appendix 1.3 

 

fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=False) 

fig.set_size_inches(18, 15) 

sns.lineplot(normalized_df, ax=ax[0][0]) 

https://deepnote.com/workspace/andromeda-data-science-group-project-c0ac1109-a8e0-4436-b4de-5b1043d1159a/project/Data-Science-Group-Project-638889fe-2546-41ac-8d2f-f9d8b29d307c
https://deepnote.com/workspace/andromeda-data-science-group-project-c0ac1109-a8e0-4436-b4de-5b1043d1159a/project/Data-Science-Group-Project-638889fe-2546-41ac-8d2f-f9d8b29d307c
https://deepnote.com/workspace/andromeda-data-science-group-project-c0ac1109-a8e0-4436-b4de-5b1043d1159a/project/Data-Science-Group-Project-638889fe-2546-41ac-8d2f-f9d8b29d307c
https://github.com/vijayjawali/Andromeda.git
https://638889fe-2546-41ac-8d2f-f9d8b29d307c.deepnoteproject.com/
https://andromeda-dashboard-2ms2zpkv2q-ew.a.run.app/
https://github.com/vijayjawali/andromeda-dashboard.git
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sns.lineplot(df_zscore, ax=ax[0][1]) 

sns.lineplot(df_scaled, ax=ax[1][0]) 

sns.lineplot(df_robust, ax=ax[1][1]) 

ax[0, 0].set_title("Min Max Approach") 

ax[0, 1].set_title("The z-score method") 

ax[1, 0].set_title("Maximum Absolute Scaling") 

ax[1, 1].set_title("The Robust Scaling") 

fig.tight_layout() 

 

Appendix 1.4 

 

fuelData = pd.read_csv('fuel.csv').iloc[:,:7] 

petrolData = fuelData.iloc[:,1::2] 

dieselData = fuelData.iloc[:,2::2] 

petrolData.index = fuelData['Weekly Prices time series'].iloc[0::] 

dieselData.index = fuelData['Weekly Prices time series'].iloc[0::] 

petrolData.rename( columns={i:j for i,j in zip(petrolData.columns, ['Pump Price','Duty Rate', 'Vat']) }, inplace=True) 

dieselData.rename( columns={i:j for i,j in zip(dieselData.columns, ['Pump Price','Duty Rate', 'Vat']) }, inplace=True) 

 

petrolData = (petrolData.tail(-2)).apply(pd.to_numeric) 

dieselData = dieselData.tail(-2).apply(pd.to_numeric) 

dieselData['Total'] = dieselData['Pump Price']+dieselData['Duty Rate']+dieselData['Vat'] 

petrolData['Total'] = petrolData['Pump Price']+petrolData['Duty Rate']+petrolData['Vat'] 

dieselData = dieselData.set_index(fuelData['Weekly Prices time series'].iloc[2::]) 

petrolData = petrolData.set_index(fuelData['Weekly Prices time series'].iloc[2::]) 

 

finalFuelData = pd.DataFrame({'Petrol':petrolData['Total'], 'Diesel':dieselData['Total']}) 

finalFuelData = finalFuelData.set_index(pd.DatetimeIndex(finalFuelData.index)) 

 

for column in finalFuelData.columns: 

    finalFuelData[column] = (finalFuelData[column] - finalFuelData[column].median())  / (finalFuelData[column].quantile(0.75) - 

finalFuelData[column].quantile(0.25)) 

finalFuelData.head() 

 

 

Appendix 2 

Appendix 2.1 

for col in dataGreaterthan2003.columns: 

    cycle, trend = sm.tsa.filters.hpfilter(dataGreaterthan2003[col], lamb=129600) 

    results_hp[f"{col}_trend"] = trend 

    results_hp[f"{col}_cycle"] = cycle 

 



  

  

 

xiii 

 
 

Appendix 2.2 

for col in dataGreaterthan2003.columns: 

    results = adfuller(dataGreaterthan2003[col]) 

    results_df = results_df.append({'Column': col, 

                                    'ADF_Stat': results[0], 

                                    'p-value': results[1], 

                                    'Lags': results[2], 

                                    'Observations': results[3], 

                                    'Crit-1%': results[4]['1%'], 

                                    'Crit-5%': results[4]['5%'], 

                                    'Crit-10%': results[4]['10%']}, 

                                    ignore_index=True) 

 

Column ADF_Stat p-value Lags Obs Crit-1% Crit-5% Crit-10% 
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Official Core 

Consumer Price 

Index 

1.42194 0.99721 15 224 -3.45988 -2.87453 -2.57369 

Energy Price Index -1.24488 0.65399 12 227 -3.45949 -2.87435 -2.57360 

Food Price Index -0.13536 0.94580 15 224 -3.45988 -2.87453 -2.57369 

Headline Consumer 

Price Index 

1.15247 0.99564 15 224 -3.45988 -2.87453 -2.57369 

Producer Price Index -0.02545 0.95637 3 236 -3.45836 -2.87386 -2.57333 

Petrol -1.15950 0.69077 7 232 -3.45885 -2.87408 -2.57345 

Diesel -1.03561 0.74005 7 232 -3.45885 -2.87408 -2.57345 

 

hypothesisclassificationconditions = [ 

    ((results_df['p-value'] <= 0.05) & (results_df['ADF_Stat'] <= results_df['Crit-5%'])), 

    ((results_df['p-value'] > 0.05) & (results_df['ADF_Stat'] > results_df['Crit-5%'])) 

    ] 

 

hypothesisclassificationvalues = ['Rejected', 'Accepted'] 

 

Index null_hypothesis Conclusion 

Official Core Consumer Price 

Index 

Accepted Non-Stationary 

Energy Price Index Accepted Non-Stationary 

Food Price Index Accepted Non-Stationary 

Headline Consumer Price Index Accepted Non-Stationary 

Producer Price Index Accepted Non-Stationary 

Petrol Accepted Non-Stationary 

Diesel Accepted Non-Stationary 

 

Appendix 2.3 

 

Column ADF_Stat p-value Lags Obs Crit-1% Crit-5% Crit-10% 

Official Core 

Consumer Price Index 

-4.72400 0.00007 15 197 -3.46398 -2.876325 -2.57465 

Energy Price Index -4.40293 0.00029 15 197 -3.46398 -2.87632 -2.57465 

Food Price Index -5.43411 0.000002 14 198 -3.46381 -2.87625 -2.57461 

Headline Consumer 

Price Index 

-4.14056 0.00082 15 197 -3.46398 -2.87632 -2.57465 

Producer Price Index -4.51371 0.00018 13 199 -3.46364 -2.87617 -2.57457 

Petrol -4.93489 0.00002 15 197 -3.46398 -2.87632 -2.57465 

Diesel -5.11297 0.00001 15 197 -3.46398 -2.87632 -2.57465 
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Appendix 2.4 

Column null_hypothesis Conclusion 
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Official Core Consumer Price 

Index 

Rejected Stationary 

Energy Price Index Rejected Stationary 

Food Price Index Rejected Stationary 

Headline Consumer Price Index Rejected Stationary 

Producer Price Index Rejected Stationary 

Petrol Rejected Stationary 

Diesel Rejected Stationary 
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Appendix 3.1 

exponential_aic_dict = {} 

exponential_bic_dict = {} 

alpha = 0.7 

beta = 0.7 

seasonal_periods = 12 

exponentialSmoothingResultDF = pd.DataFrame() 

for col in exponentialSmoothingTrainDF.columns: 

    model = ExponentialSmoothing(exponentialSmoothingTrainDF[col],  

                                seasonal_periods=seasonal_periods, 

                                trend='add',  

                                seasonal='add') 

    model_fit = model.fit(smoothing_level=alpha, smoothing_slope=beta) 

    exponential_aic_dict[col] = model_fit.aic 

    exponential_bic_dict[col] = model_fit.bic 

    predictions = model_fit.forecast(test_size) 

    exponentialSmoothingResultDF[col] = predictions 

 

 

Appendix 3.2 

exponential_mse_dict = {} 

exponential_mae_dict = {} 

for col in exponentialSmoothingTrainDF.columns: 

    mse = np.mean(np.square(exponentialSmoothingTestDF[col] - exponentialSmoothingResultDF[col])) 

    mae = mean_absolute_error(exponentialSmoothingTestDF[col], exponentialSmoothingResultDF[col]) 

    exponential_mse_dict[col] = mse 

    exponential_mae_dict[col] = mae 

exponential_metrics_dict_list = [exponential_mse_dict, exponential_mae_dict, exponential_aic_dict, exponential_bic_dict] 

metricsDf = pd.DataFrame(exponential_metrics_dict_list, index=[exponential_mse_dict, exponential_mae_dict, exponential_aic_

dict, exponential_bic_dict]) 

metricsDf = metricsDf.T 

metricsDf.columns = ['mse', 'mae', 'aic', 'bic'] 

 

Inflation index mse mae aic bic 

Official Core 

Consumer Price 

0.0001 0.00837 -2555.22619 -2500.35666 

Energy Price 0.03002 0.13359 -1350.24938 -1295.37985 

Food Price 0.00933 0.07553 -2045.1979 -1990.32837 

Headline 

Consumer Price 

0.00116 0.0298 -2511.41097 -2456.54144 
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Producer Price 0.0224 0.13462 -1785.95788 -1731.08835 

Petrol 0.06368 0.22149 -1118.11915 -1063.24962 

Diesel 0.15553 0.36141 -1127.73178 -1072.86225 
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Appendix 4.1 
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Appendix 4.2 

autoRegressiveResultDF = pd.DataFrame() 

autoregressive_aic_dict = {} 

autoregressive_bic_dict = {} 

 

# loop through each column in `df` 

for col in autoRegressiveTrainDF.columns: 

    # Create the Auto-Regressive model for the current column 

    model = AutoReg(autoRegressiveTrainDF[col], lags=15) 

     

    # fit the model and make predictions 

    model_fit = model.fit() 

 

    # Calculate AIC and BIC 

    n = len(autoRegressiveTrainDF[col]) 

    k = len(model_fit.params) 

    autoregressive_aic_dict[col] = 2*k - 2*np.log(model_fit.llf) 

    autoregressive_bic_dict[col] = np.log(n)*k - 2*np.log(model_fit.llf) 
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    predictions = model_fit.predict(start=len(autoRegressiveTrainDF), end=len(autoRegressiveTrainDF)+12) 

     

    # add the predictions to the result dataframe 

    autoRegressiveResultDF[col] = predictions 

 

Appendix 4.3 

autoregressive_mse_dict = {} 

autoregressive_mae_dict = {} 

 

for col in autoRegressiveTrainDF.columns: 

    mse = np.mean(np.square(autoRegressiveTestDF[col] - autoRegressiveResultDF[col].head(12))) 

    mae = mean_absolute_error(autoRegressiveTestDF[col], autoRegressiveResultDF[col].head(12)) 

    autoregressive_mse_dict[col] = mse 

    autoregressive_mae_dict[col] = mae 

 

autoregressive_metrics_dict_list = [autoregressive_mse_dict, autoregressive_mae_dict, autoregressive_aic_dict, autoregressive_bi

c_dict] 

metricsDf = pd.DataFrame(autoregressive_metrics_dict_list, index=[autoregressive_mse_dict, autoregressive_mae_dict, autoregre

ssive_aic_dict, autoregressive_bic_dict]) 

metricsDf = metricsDf.T 

metricsDf.columns = ['mse', 'mae', 'aic', 'bic'] 

 

 

 

Inflation index mse mae aic bic 

Official Core 

Consumer Price 

1e-05 0.00219 18.13619 70.98907 

Energy Price 0.00336 0.04876 19.55395 72.40683 

Food Price 0.00017 0.0101 18.57138 71.42426 

Headline 

Consumer Price 

3e-05 0.00445 18.2161 71.06898 

Producer Price 0.0006 0.02147 18.91722 71.7701 

Petrol 0.01109 0.08257 19.90056 72.75344 

Diesel 0.00929 0.08454 19.90165 72.75453 
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